Dynamic Graph Sampling Service for Real-time GNN Inference at Scale

Li Su?
Yong Lit

Wenting Shen?
Wenyuan Yu?

Jie Sunf

Zichao Zhang?
Zeke Wang'

Zuocheng Shi’ Jingbo Xu?
Fei Wu Jingren Zhou?

{jiesun, shizuocheng, wangzeke, wufei} @zju.edu.cn'
{lisu.sl, wenting.swt, houbai.zzc, xujingbo.xjb, jiufeng.ly, wenyuan.ywy, jingren.zhou } @alibaba-inc.com*

Zhejiang University!

Abstract

Graph neural networks(GNNSs) learn graph vertex represen-
tations by aggregating multi-hop neighbor information. In-
dustrial applications often adopt mini-batch training to scale
out GNNSs on large-scale graphs, where neighbor sampling
is used during both model training and inference. Since the
structure and attributes of real-world graphs often change
dynamically, it is imperative that the inferred vertex repre-
sentation can accurately reflect these updates.

GNN inference services, such as real-time recommenda-
tion systems, often require stable millisecond-level latency
SLO. However, meeting this requirement can be challeng-
ing due to highly concurrent inference requests and dy-
namic graph updates. Firstly, multi-hop sampling can intro-
duce high time complexity, as sampling a vertex often re-
quires traversing all its neighbors. Secondly, as the graphs
in industrial settings often exceed the single-machine mem-
ory, graphs are either persisted in disk or partitioned and
stored in-memory in a distributed cluster. Both approaches
will incur significant I/O overheads during graph sampling.
Thirdly, the computation required for sampling different ver-
tices can vary significantly due to the inherent skewness in
real-world graphs, which will lead to unstable latency perfor-
mance among concurrent inference requests. Given these ob-
servations, existing approaches, e.g., using graph databases
for storage and graph sampling, cannot fulfill the perfor-
mance SLOs of real-time GNN inference services.

In this work, we propose Dynamic Graph Sampling Ser-
vice (DGS), which aims to address the challenges associated
with graph sampling in real-time GNN inference on dynamic
graphs. Our key insight is that the GNN inference service is
query-aware: given a GNN model, the graph sampling query
for both training and inference is fixed. With this observa-
tion, we propose an event-driven pre-sampling mechanism
in DGS. Driven by the graph updates, sample caches of ver-
tices are dynamically updated using reservoir sampling fol-
lowing the specified query. In specific, DGS decomposes a
k-hop sampling query into k one-hop sampling queries. For
each one-hop query, when a graph update of a relevant vertex
(e.g., an edge sourcing from this vertex with a specified ver-
tex label) arrives, the one-hop sampling results of this vertex
will be updated accordingly. The k-hop sampling result of
an inference request can be constructed via a fixed number
of point look-ups in the cached one-hop sampling results.

Alibaba Group?

Sampling Worker 1 Serving Worker 1
Pre-sampling 1 {7 Local KVLookup Inf
& { Ve[Hop 1 | [Vl HopK e (N | [KTepsamiies Fg:fueeﬂscte
1 23 1 712 { v 11 ; q
Streaming LSS N) B v 0 5 N = P
Graph Update . I

% Sampllng WorkerM 1\ Serving Worker N
Pre-sampling { Local KV Lookup B

V“ Hop 1 Vd Hop K Table EL | V[_KThop samples | [} Inference
35 1011)

[N 46 121516] i|© Request

Graph Update Flow Subscription Event Pre-sampling Data Flow

Figure 1: Architecture of DGS.
The overall architecture of DGS is depicted in Figure 1.

DGS mainly consists of two types of components: sampling
workers and serving workers. The input graph updates are
partitioned according to the key (e.g., vertex IDs) range.
Each sampling worker is responsible for a specific partition:
conducting pre-sampling for the one-hop sampling queries
and transmitting the results to the serving workers. Each
serving worker caches the sampling results of k& one-hop
queries received from sampling workers and serves the in-
ference requests for a partition of vertices in the graph. The
sampling and serving workers can scale independently to
cope with workload fluctuations of graph updates and infer-
ence requests. To minimize the latency in generating com-
plete k-hop sampling results, DGS sends all k-hop sampling
results of vertex v; to the serving worker that handles v;’s
inference request, such that generating the complete graph
sampling for an inference request only requires accessing
local caches on a single serving worker. To achieve this, ev-
ery sampling worker maintains a subscription table for each
one-hop query recording the list of serving workers that sub-
scribe to the one-hop query results. E.g., either adding or
deleting vertex v; from the first-hop samples of v; triggers
a message recording this event sent to the sampling server
that holds the partition containing v;, and the subscription
information of v; will be updated correspondingly. With this
design, DGS can achieve a very stable latency performance
under highly concurrent inference workloads.

Experiments on real Alibaba e-commerce datasets show
that DGS can maintain the P99 latency of inference requests
(of a two-hop random sampling query) within 20ms mil-
liseconds, and process around 20, 000 requests per second
in each serving worker. The throughput of update ingestion
of a single sampling worker reaches 109MB/s and can scale
out linearly.

This work was supported by Alibaba Group through Al-
ibaba Innovative Research Program.

	DGS (4).pdf
	eurosys23-poster-dgs-final-ppt.pdf
	幻灯片 1

