
Dynamic Graph Sampling Service for Real-time GNN Inference at Scale
Jie Sun† Li Su‡ Wenting Shen‡ Zichao Zhang‡ Zuocheng Shi† Jingbo Xu‡

Yong Li‡ Wenyuan Yu‡ Zeke Wang† Fei Wu† Jingren Zhou‡

{jiesun, shizuocheng, wangzeke, wufei}@zju.edu.cn†

{lisu.sl, wenting.swt, houbai.zzc, xujingbo.xjb, jiufeng.ly, wenyuan.ywy, jingren.zhou}@alibaba-inc.com‡

Zhejiang University† Alibaba Group‡

Abstract
Graph neural networks(GNNs) learn graph vertex represen-
tations by aggregating multi-hop neighbor information. In-
dustrial applications often adopt mini-batch training to scale
out GNNs on large-scale graphs, where neighbor sampling
is used during both model training and inference. Since the
structure and attributes of real-world graphs often change
dynamically, it is imperative that the inferred vertex repre-
sentation can accurately reflect these updates.

GNN inference services, such as real-time recommenda-
tion systems, often require stable millisecond-level latency
SLO. However, meeting this requirement can be challeng-
ing due to highly concurrent inference requests and dy-
namic graph updates. Firstly, multi-hop sampling can intro-
duce high time complexity, as sampling a vertex often re-
quires traversing all its neighbors. Secondly, as the graphs
in industrial settings often exceed the single-machine mem-
ory, graphs are either persisted in disk or partitioned and
stored in-memory in a distributed cluster. Both approaches
will incur significant I/O overheads during graph sampling.
Thirdly, the computation required for sampling different ver-
tices can vary significantly due to the inherent skewness in
real-world graphs, which will lead to unstable latency perfor-
mance among concurrent inference requests. Given these ob-
servations, existing approaches, e.g., using graph databases
for storage and graph sampling, cannot fulfill the perfor-
mance SLOs of real-time GNN inference services.

In this work, we propose Dynamic Graph Sampling Ser-
vice (DGS), which aims to address the challenges associated
with graph sampling in real-time GNN inference on dynamic
graphs. Our key insight is that the GNN inference service is
query-aware: given a GNN model, the graph sampling query
for both training and inference is fixed. With this observa-
tion, we propose an event-driven pre-sampling mechanism
in DGS. Driven by the graph updates, sample caches of ver-
tices are dynamically updated using reservoir sampling fol-
lowing the specified query. In specific, DGS decomposes a
k-hop sampling query into k one-hop sampling queries. For
each one-hop query, when a graph update of a relevant vertex
(e.g., an edge sourcing from this vertex with a specified ver-
tex label) arrives, the one-hop sampling results of this vertex
will be updated accordingly. The k-hop sampling result of
an inference request can be constructed via a fixed number
of point look-ups in the cached one-hop sampling results.

Figure 1: Architecture of DGS.
The overall architecture of DGS is depicted in Figure 1.

DGS mainly consists of two types of components: sampling
workers and serving workers. The input graph updates are
partitioned according to the key (e.g., vertex IDs) range.
Each sampling worker is responsible for a specific partition:
conducting pre-sampling for the one-hop sampling queries
and transmitting the results to the serving workers. Each
serving worker caches the sampling results of k one-hop
queries received from sampling workers and serves the in-
ference requests for a partition of vertices in the graph. The
sampling and serving workers can scale independently to
cope with workload fluctuations of graph updates and infer-
ence requests. To minimize the latency in generating com-
plete k-hop sampling results, DGS sends all k-hop sampling
results of vertex vi to the serving worker that handles vi’s
inference request, such that generating the complete graph
sampling for an inference request only requires accessing
local caches on a single serving worker. To achieve this, ev-
ery sampling worker maintains a subscription table for each
one-hop query recording the list of serving workers that sub-
scribe to the one-hop query results. E.g., either adding or
deleting vertex vj from the first-hop samples of vi triggers
a message recording this event sent to the sampling server
that holds the partition containing vj , and the subscription
information of vj will be updated correspondingly. With this
design, DGS can achieve a very stable latency performance
under highly concurrent inference workloads.

Experiments on real Alibaba e-commerce datasets show
that DGS can maintain the P99 latency of inference requests
(of a two-hop random sampling query) within 20ms mil-
liseconds, and process around 20, 000 requests per second
in each serving worker. The throughput of update ingestion
of a single sampling worker reaches 109MB/s and can scale
out linearly.

This work was supported by Alibaba Group through Al-
ibaba Innovative Research Program.


	DGS (4).pdf
	eurosys23-poster-dgs-final-ppt.pdf
	幻灯片 1


