
Dynamic Graph Sampling Service for Real-time GNN Inference at Scale

Challenges

System Overview

(1) High time complexity of K-hop sampling;
(2) I/O overheads of distributed graph storage;
(3) Imbalanced workload due to graph skewness.

Evaluation

Background

Jie Sun† Li Su‡ Wenting Shen‡ Zichao Zhang‡ Zuocheng Shi† Jingbo Xu‡

Yong Li‡ Wenyuan Yu‡ Zeke Wang† Fei Wu† Jingren Zhou‡

Zhejiang University † Alibaba Group‡

Settings:
(1) Real Alibaba e-commerce datasets, #V=240M, #E=6.1B;
(2) 2-hop random sampling query, fan-outs=[15,10];
(3) 2 machines for sampling workers, 2 machines for serving
workers, each with 64 * Intel(R) Xeon(R) CPU E5-2682 v4,
256GB host memory, 960GB SAMSUNG NVMe SSD

Results in a single machine:

GNN Inference Service on Dynamic Graph

Target:
Real-time GNN inference service on large-scale dynamic
graph.

Insights:
GNN inference service is query-aware.

Architecture:
DGS decouples graph sampling and GNN inference
physically.
Sampling worker: Each sampling worker is responsible
for a specific graph partition: conducting pre-sampling
for the decomposed one-hop sampling queries and
delivering the sampling results to the serving workers.
Serving worker: Each serving worker caches the
sampling results of K one-hop queries received from
sampling workers and serves the inference requests for a
partition of vertices in the graph.

Serving Worker

Sampling Worker

Handle inference request for a partition of vertices
Generate K-hop samples by local KV Lookups.

DGS is open-sourced as a part of Graph-Learn:
https://github.com/alibaba/graph-learn

Step 1: Decompose K-hop query into K 1-hop queries
Example: 2-hop Query
g.V(“user”, feed_id).alias(“seed”)
.OutV(“click”).sample(2).by(“random”)
.OutV(“swing”).sample(2).by(“random”).values

Decomposed into:
1-hop query Q1:
V.OutV(“click”).sample(2).by(“random”)
1-hop query Q2:
V.OutV(“swing”).sample(2).by(“random”)
Exclusively store the 1 hop samples on sampling workers

Step 2: Event-driven reservoir sample
Graph update event: Edge_Type (src_v, dst_v, timestamp)
E.g., click(1, 5, T1); swing(4, 8, T2)
Reservoir sampling: Randomly replace existing samples

Step 3: Update the subscription table
Suppose vertex 3 is only sampled by vertex 1.

Vid

Q1

1 2, 3
1 2, 5

Q2Vid
4 6, 7
4

Time
T0

T1

1 2, 5 4 6, 7T2

Updated?
/

yes
no

Vid

6, 7

Worker

1
3

In industrial GNN scenarios, sampling-based mini-batch
training is widely adopted to scale out GNN applications
to very large graphs, where receptive fields for vertices
are obtained via neighbor sampling during both model
training and inference.Since the structure and attributes
of real-world graphs change continuously, it is
imperative that the inferred vertex representation can
accurately reflect these dynamic updates in real-time.
GNN inference services on dynamic graph mush
achieve latency-related SLOs. For example, GNN-based
real-time recommendation systems often require stable
millisecond-level latency performance.

Key Designs

Q1

Q2

Hop

1
5

Q1

Q2

Serving worker 1
Serving worker 1

Subscribed by

Serving worker 1
Serving worker 1

T0

T0

Time

T1

T1

Vid

Serving Latency P99: 20ms

Serving Throughput 20,000 QPS

Update Ingestion Throughput 109MB/s

Serving & update ingestion throughput can scale out linearly.

Q1 Q2

11 2, 5 8, 9, 10, 13

VidWorker Q1 Q2

82 4, 9 6, 7, 15, 16

	DGS (4).pdf
	eurosys23-poster-dgs-final-ppt.pdf
	幻灯片 1

