
GraphScope Flex: LEGO-like Graph Computing Stack
Tao He

Shuxian Hu
Longbin Lai
Dongze Li
Neng Li
Xue Li

Lexiao Liu
Alibaba Group

Hangzhou, China

Xiaojian Luo
Binqing Lyu
Ke Meng
Sijie Shen
Li Su

Lei Wang
Jingbo Xu

Alibaba Group
graphscope@alibaba-inc.com

Wenyuan Yu
Weibin Zeng
Lei Zhang

Siyuan Zhang
Jingren Zhou
Xiaoli Zhou
Diwen Zhu
Alibaba Group

Hangzhou, China

ABSTRACT
Graph computing has become increasingly crucial in processing
large-scale graph data, with numerous systems developed for this
purpose. Two years ago, we introduced GraphScope as a system
addressing a wide array of graph computing needs, including graph
traversal, analytics, and learning in one system. Since its incep-
tion, GraphScope has achieved significant technological advance-
ments and gained widespread adoption across various industries.
However, one key lesson from this journey has been understanding
the limitations of a “one-size-fits-all” approach, especially when
dealing with the diversity of programming interfaces, applications,
and data storage formats in graph computing. In response to these
challenges, we presentGraphScope Flex, the next iteration of Graph-
Scope. GraphScope Flex is designed to be both resource-efficient
and cost-effective, while also providing flexibility and user-friendliness
through its LEGO-like modularity. This paper explores the architec-
tural innovations and fundamental design principles of GraphScope
Flex, all of which are direct outcomes of the lessons learned during
our ongoing development process. We validate the adaptability and
efficiency of GraphScope Flex with extensive evaluations on syn-
thetic and real-world datasets. The results show that GraphScope
Flex achieves 2.4× throughput and up to 55.7× speedup over other
systems on the LDBC Social Network and Graphalytics benchmarks,
respectively. Furthermore, GraphScope Flex accomplishes up to a
2,400× performance gain in real-world applications, demonstrating
its proficiency across a wide range of graph computing scenarios
with increased effectiveness.

CCS CONCEPTS
• Computer systems organization → n-tier architectures.

KEYWORDS
graph computing, distributed system, graph analytics, graph query

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0422-2/24/06. . . $15.00
https://doi.org/10.1145/3626246.3653383

Data Stream

Workload 4
Decision making

Online

Gremlin

Property Graph

Workload 1
Ranking

OLAP job

C++/PIE

Simple Graph

Workload 2
Fraud detection

GNN

Sparse Tensor

Workload 3
Personalized
recommandation

High-QPS

SDK

Property Graph

In-memory Archived

Workload 5
BI analysis

Low-latency

Cypher/GQL

Property Graph

Figure 1: Diversified graph workloads in e-commerce.

ACM Reference Format:
Tao He, Shuxian Hu, Longbin Lai, Dongze Li, Neng Li, Xue Li, Lexiao Liu,
Xiaojian Luo, Binqing Lyu, Ke Meng, Sijie Shen, Li Su, Lei Wang, Jingbo Xu,
Wenyuan Yu, Weibin Zeng, Lei Zhang, Siyuan Zhang, Jingren Zhou, Xiaoli
Zhou, and Diwen Zhu. 2024. GraphScope Flex: LEGO-like Graph Computing
Stack. In Companion of the 2024 International Conference on Management of
Data (SIGMOD-Companion ’24), June 9–15, 2024, Santiago, AA, Chile. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3626246.3653383

1 INTRODUCTION
Graphs are increasingly becoming the backbone of numerous real-
world applications, permeating diverse fields such as social net-
works, e-commerce, bioinformatics, fintech, and knowledge base [31,
51, 72, 81, 86]. These applications often involve complex interactions
and relationships, uniquely represented through graph structures.
As the scale of graph data and the intricacy of applications grow,
the demand for specialized graph processing systems has escalated.
Systems like Pregel [56], Spark GraphX [9], TuGraph [27], Tiger-
Graph [11] and PyG [23] have been developed to address specific
graph computation requirements. However, developers often find
themselves juggling multiple systems with vastly different pro-
gramming models and runtime environments. This multiplicity
gives rise to a host of issues, such as managing the complexities of
data representation, resource scheduling, and performance tuning
across these disparate systems.

In response to these challenges, GraphScope [40] was devel-
oped as a pioneering solution, designed to offer a comprehensive
approach to graph computing. Unlike its predecessors, Graph-
Scope supports a wide range of computing paradigms, enabling it
to handle diverse tasks like graph analytics, graph learning, and in-
teractive queries within a single, unified system. Internally, Graph-
Scope employs an extension of Gremlin and a unified dataflow

386

https://doi.org/10.1145/3626246.3653383
https://doi.org/10.1145/3626246.3653383
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626246.3653383&domain=pdf&date_stamp=2024-06-09

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

engine, capable of processing various types of graph computations
efficiently. Furthermore, it enhances interoperability with other
frameworks in the PyData ecosystem. Despite its ambition to be
an efficient, user-friendly, and all-encompassing solution for graph
computing, GraphScope has encountered practical challenges.
Real-world example. Figure 1 offers a simplified portrayal of the
diversity inherent in graph computing workloads as seen in real-
world settings with Alibaba as an example. Here, data is represented
as graphs. Within these graphs, vertices symbolize entities such as
buyers, sellers, and items. In contrast, edges represent relationships
or activities such as buying, selling, or reviewing. These graphs
could be either dynamic or static, large or small, and either fit
in-memory or exist as extensive historical archives.

These diverse graphs inhabit different graph workloads tuned
to cater to a variety of business scenarios. For instance, a ranking
workload stipulates the order in which items or sellers appear in
search results (marked as Workload 1 in Figure 1). On the other
hand, to unravel suspicious entities potentially participating in
fraudulent activities to manipulate their ratings and rankings, an
anti-fraud task deploying link prediction (SEAL [82]) algorithm
is activated (Workload 2). The platform also offers a personalized
recommendation service predicting user interests based on histori-
cal behaviors and tastes (Workload 3), while a BI analysis-enabled
WebUI equips data scientists with the tools necessary to make
data-driven decisions (Workload 4), such as identifying the most
popular sellers or items in specific regions. Furthermore, some ad-
hoc BI workloads sporadically operate over large historical graph
data archives (Workload 5), often too large for a graph database’s
memory due to their infrequent use and high costs.

This example – to some extent mirroring the design motif behind
GraphScope – further reasserts the reality that real-world graph
computing workloads are diverse, yet they share certain character-
istics. Workload 1 encapsulates these shared traits via its utilization
of an algorithm akin to PageRank — a category of graph analytics
usually demanding high data-intensity and being memory-bound.
On the other hand, Workload 2 involves a Graph Neural Network
(GNN) task, which often necessitates memory-bound data sampling
and CPU/GPU resource-limited computation-intensive back-end
training. In contrast, Workloads 4 and 5 are frequently interactive
complex query-based graph exploration tasks which typically target
a smaller selective subset of the graph based on certain conditions.

Even thoughGraphScope offers support for distributed immutable
in-memory graph storage suitable for static graph processing, real-
life workloads often demand varying formats and access paths to
the data. As illustrated in Figure 1, visible in the blue section, itera-
tive analytics like k-core and label propagation generally operate
over attributed or simple graphs. Conversely, GNN models work
on sparse tensors, while interactive queries use a labeled prop-
erty graph model to facilitate complex attribute-oriented queries.
Furthermore, data lifecycle stages also differ — data mining and
GNN training usually occur on a snapshot of graph data, while
GNN inference and interactive queries function on dynamic graphs
receiving continuous updates. BI analysis can occur either over
dynamic graphs or historical graph data archives.

While the unified interface proposition from GraphScope might
seem beneficial, in practice its one-size-fits-all strategy is ineffective

due to the disparate needs of various workloads and user prefer-
ences. For instance, data scientists performing interactive queries
often prefer domain-specific languages such as Gremlin or Cypher,
while developers working on GNN models lean towards specialty
libraries such as PyG. Similarly, services necessitating high query
throughput might use parameterized queries structured as stored
procedures and for graph analytics, iterative algorithms are typi-
cally coded in C++ or Java and made accessible as built-in libraries.

Our experience with GraphScope has underscored the limita-
tions of a “one-size-fits-all” approach in the complex arena of graph
computing. While requirements can range widely, they often ex-
hibit underlying commonalities. We’ve found that a design choice
effective for one scenario may fall short in another. No single solu-
tion — whether concerning the engine, interface, or storage — can
accommodate all varied requirements comprehensively. This diver-
gence between theory and practice revealed through our work on
GraphScope, which aimed for a unified solution, led to frustrating
trade-offs and imposed certain shortcomings onto specific tasks.
GraphScope Flex. In this paper, we introduce GraphScope Flex,
the next iteration of GraphScope. Adopting a modular architec-
ture,GraphScope Flex aims to minimize resource and cost overhead
while enhancing deployment flexibility and user experience. Unlike
GraphScope’s unified dataflow engine, GraphScope Flex disaggre-
gates the engines for various graph tasks, as well as their interfaces
and storages. This modular design makes the system architecture
akin to a set of LEGO bricks: users can selectively deploy compo-
nents of GraphScope Flex to streamline the deployment process
and adapt the system to their specific needs.

In summary, we make the following contributions:
• We explore graph models, storage schemes, and computing work-
loads, along with programming interfaces and system perfor-
mance in graph computing. We also discuss opportunities to
enhance composability by decoupling common components. (§2).

• We offer a bird-eye view of the architecture of GraphScope
Flex and an in-depth discussion on itsmodules and techniques.(§3).

• Wedelve intoGRIN for decoupling graph storage fromworkloads,
and key graph storage techniques, such as in-memory Vineyard,
dynamic graph store GART and archive format GraphAr(§4).

• We demonstrate GraphScope Flex’s flexibility in handling graph
queries by using an intermediate representation that supports
both Gremlin and Cypher. It executes queries on suitable engines
based on their OLAP or OLTP characteristics (§5).

• We examine howGraphScope Flex excels in managing graph ana-
lytics by offering a range of built-in algorithms and programming
interfaces, supported by both CPU and GPU backends (§6).

• We examine the suitability of GraphScope Flex in catering to
diverse requirements in GNN workloads, highlighting its decou-
pling of sampling and training for independent scaling (§7).

• We present case studies illustrating GraphScope Flex’s practical
application, efficacy, and versatility in real-world scenarios (§8).

• Lastly, we empirically verify GraphScope Flex’s performance.
Our findings reveal that it achieves 2.4× the throughput and up
to 55.7× speedup on the LDBC Social Network and Graphalytics
benchmarks, respectively. Furthermore, it excels in real-world
applications, achieving up to 2, 400× performance speedup com-
pared to previous solutions (§9).

387

GraphScope Flex: LEGO-like Graph Computing Stack SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

id:3712933
time: 08:20
sale:40%

:Sell

3

2
4

Buyer
id

username
credits

…

Item
id

price
discount

…

Seller

id
rating

location
…

Knows

Sell

Buy(a) simple graph

1

2

3

4
5

1

2

3

4

54

id:4328943
time: 21:01
date:10/21

:Buy
id:193273
price:29.9
discount:5%
…

4:Item

id:23402
username: A1
credits:8
…

1:Buyer id:2103
rating:4.0
location:SH
…

5:Seller1

4
2

5

30 1 1 1 0
0 0 1 0 0
0 0 0 0 0

2

0 0 0 0 0
0 0 1 1 0

1

4
2

5

3
is_a

is_a
lives_in

London
is_

a

Ph.D.Alice

Bob Olive

is
_f

rie
nd

(b) weighted graph (d) RDF graph (e) a LPG graph with its schema

(c) tensor/matrix

Figure 2: Graph models.

2 BACKGROUND & RELATEDWORK
In this section, we present the background on graph data mod-
els, storage formats, applications, programming interfaces, perfor-
mance requirements, and existing graph computing systems. We
also review the diversity within these components and highlight
opportunities for a disaggregated system design.

2.1 Graph Models & Organizations
Graphs are ubiquitous in real life, effectively modeling complex
systems and relationships through vertices and edges. However,
the superficial simplicity of graph abstraction conceals a landscape
filled with diversity and fragmented nuances. Upon closer inspec-
tion, the concept of a graph becomes more complex and diverse
than the relational data processing landscape.

Graphs can adopt various data models such as simple graphs,
weighted graphs common in graph analytics tasks (like PageRank
or SSSP) [1, 9, 56, 83], sparse matrix/tensor used in GNNmodels [23,
25, 85], RDF observed in knowledge bases [4, 21, 38], or Labeled
Property Graph (LPG) [29, 30, 32] widely used in graph databases [7,
11, 20, 27]. Each of these models supports varying operations and
provides different access interfaces. Correspondingly, the storage
and processing needs also differ substantially, thereby highlighting
the need for customizable and flexible solutions in graph computing.

The plurality of graph data models when combined with the
myriad ways of graph organization amplifies the diversity, making
the landscape of graph processing far from standardized.

2.2 Applications of Graph Computing
Graph computing spans a wide range of applications across do-
mains. We categorize these applications into three main types, each
associated with specific graph models and querying paradigms.
Graph Querying. Graph querying involves using specialized lan-
guages such as Gremlin [64], Cypher [42], GQL [18], and SPARQL [2]
to interrogate and manipulate graph structures. This category pri-
marily includes operations related to pattern matching and complex
query formulations. Gremlin and Cypher are often employed for tra-
versal and pattern matching in labeled property graphs, facilitating
intricate queries and analyses. On the other hand, SPARQL is pre-
dominantly used with RDF graphs, focusing more on sophisticated
pattern matching, data aggregation, and integration across various
data sources. This distinction highlights the varied nature of graph
querying, necessitating flexible and adaptable query processing
capabilities in graph computing systems.

Graph Analytics. Graph analytics investigates global structure
of graphs using algorithms for clustering, centrality, shortest paths,
and reachability. Applications in this category typically utilize sim-
ple or weighted graphs. For instance, clustering algorithms like
Louvain [34] and centrality measures such as PageRank [60] are
central to understanding network dynamics and influence patterns
in domains like social network analysis and epidemiology [47].
Graph Learning.Graph learning, especially through Graph Neural
Networks (GNNs), applies machine learning techniques to graph-
structured data, often represented as sparse tensors or matrices [85].
This process typically involves three key steps: sampling, training,
and inference. Sampling is crucial for large graphs to create manage-
able subsets for efficient processing. During training, models learn
from the graph’s topology and node features, preparing for tasks
like node classification or link prediction. Inference then applies
these models to new or evolving data, adaptable to both small-scale
and large-scale graph scenarios. Graph learning is vital in fields
where relational data patterns play a key role, such as in social
network analysis [46, 55, 78] and bioinformatics [79, 84].

2.3 Programming Interfaces
The diversity in graph computing also extends to programming in-
terfaces, each tailored to specific domains within graph operations.

For graph querying, Gremlin [64] and Cypher [42] are widely
used. Gremlin, part of Apache TinkerPop [5], offers an extensive
set of operators, providing rich expressiveness for graph traversal.
However, its robustness comes with complexity, as it includes over
200 steps, manywith overlapping functionalities. For instance, steps
like valueMap and elementMap both return vertex/edge properties,
but with nuanced differences. This complexity poses challenges in
ensuring comprehensive support within interactive graph engines.
Cypher, initiated by Neo4j [6], has gained wide adoption and signif-
icantly contributed to the development of GQL [8], the emerging
standard for querying graph databases. The increasing demand for
Cypher integration into various systems, including GraphScope,
alongside the standardization of ISO/GQL [18], highlights the evolv-
ing nature of graph querying interfaces. Additionally, many graph
databases offer the capability to register custom stored procedures
for enhanced querying functionality.

In graph analytics, following the fixed-point computation, the
Pregel API [56] represents a “think-like-a-vertex” interface [57], fo-
cusing on vertex-centric computations. PIE [41] allows for handling
a partition of a graph as a primary element, offering an alternative
methodology. On the other hand, FLASH [53] supports a flexible
control flow beyond fixed-point for a wider range of algorithms.
In addition, the block-centric model [70], edge-centric model [65],
GAS [45] and GraphBLAS [36] are also tailored models for repre-
senting graph analytics computation.

Graph learning, especially in training and inference phases, typi-
cally employs Python-based interfaces, due to Python’s prevalence
in the machine learning community. This choice facilitates the in-
tegration of graph learning tasks with existing Python-based data
science and machine learning ecosystems.

388

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

2.4 Performance Requirements
Performance requirements in real-world graph applications exhibit
significant diversity, often reflecting the varied nature of the tasks.

Even within a single domain like graph querying, performance
expectations can range from high query throughput (QPS) for han-
dling multiple concurrent requests to data parallelism for complex
queries typical in BI scenarios. In online services, the emphasis
often lies on high availability. Conversely, some applications might
prioritize rapid processing of individual tasks, focusing on low
latency and efficient single-task execution.

Graph analytics, often alignedwith batch processing, also present
a spectrum of performance needs. While some can be efficiently
conducted in memory, others, especially those involving larger
graphs with fewer machines, necessitate out-of-core processing.

Graph learning, particularly in the context of training processes,
is predominantly batch-oriented. However, when dealing with large
graphs, this often involves a combination of sampling and training
to manage the computational demands. This process requires not
just efficient data processing, but also a careful balancing of resource
utilization to ensure optimal learning outcomes.

These varied performance requirements often coexist and in-
tersect in practical scenarios, underscoring the need for diverse
runtime engines and system architectures. Such diversity echoes
the principle that a “one-size-fits-all” approach is inadequate in the
realm of graph computing.

2.5 Existing Graph Computing Systems
The complex landscape of graph computing, characterized by its
diversity in storage abstractions, domain-specific applications, inter-
faces, and performance requirements, challenges the practicality of
a “one-size-fits-all” solution like the original design of GraphScope.

In this varied context, questions arise: Can we, for instance,
have a system that enables high-QPS Gremlin querying on a static
in-memory graph? Or set up an MPP-like Cypher process on a dy-
namic graph, while also accommodating GNN training on the same
graph? Among state-of-the-art graph computing systems, special-
ized systems have been developed to address tailored requirements
for certain types of graph workloads. For instance, various graph
database systems and graph query engines [11, 20, 48, 49, 63, 67, 71]
are developed to tailor high-throughput or low-latency query exe-
cution with different underlying organization and storage of graphs.
Whereas for graph analytic workloads, a different set of siloed sys-
tems [9, 33, 35, 41, 58, 61, 74, 76, 87] are designed to excel in paral-
lelizing large-scale analytical computations. To facilitate sampling-
based mini-batch training, GNN systems [43, 54, 68, 77] usually
have their own graph engines and utilize in-memory storage to
maximize the sampling throughputs.

2.6 Opportunity: LEGO-like Modularity
One possible solution to this complexity does not lie in creating
siloed, specialized and fragmented systems from scratch for each
unique requirement. Instead, the key is in embracing a LEGO-like
modularity. This approach involves designing graph computing
components – such as various graph storages, runtime engines,
workloads, and interfaces – in a way that they can interlock or
“plug” into each other seamlessly, much like LEGO bricks.

 Gremlin Cypher Interfaces GNN Models

 GRAPE

 Hiactor Gaia

Hiactor
Codegen

Gaia
Codegen

 Builtin Apps

Tensorflow

Vineyard GraphAr GART

 Graph Query Optimizer

Frontend
Layer

Execution
Engine Layer

Storage
Layer

 Graph-Learn
 Graph IR

Python/Java/… SDK RESTful/WebSocket/… API

PyTorch

 GRIN

 Pregel/PIE FLASH

Components

…

Deployments
flexbuild

2 1

3 4 5 6 7

8

9

10 11

12 13

14 15

16

17

18 19

20

21 22 23

>_

 mCSR …24

Figure 3: System architecture

In essence, thismodular design, which also finds some attempts [62,
73] in other domains, not only addresses the broad spectrum of
graph computing requirements but also fosters innovation and
adaptability in system architecture, paving the way for more effi-
cient and effective solutions in the field of graph computing.

3 SYSTEM OVERVIEW
Building on the identified opportunity, we introduce GraphScope
Flex, a comprehensive system for large-scale graph processing that
employs a disaggregated design. It features a modular architecture
that reduces resource requirements while providing a seamless,
user-friendly experience for flexible deployment. As depicted in
Figure 3, GraphScope Flex comprises multiple components, akin
to LEGO building bricks. Each component is designed to provide
specific functionalities, yet some share underlying commonalities.
This modular approach allows users to select components that
best align with their specific requirements and build a tailored
graph computing stack for their own scenarios. The components
are classified into three layers:
Frontend Layer. Graph processing typically necessitates diverse
interfaces for distinct tasks. GraphScope Flex offers a range of user
interface options, including SDKs (labeled by 1), Web Sockets,
and RESTful APIs 2 . For graph queries, GraphScope Flex accom-
modates multiple query languages, specifically Gremlin 3 and
Cypher 4 . For tasks involving graph analytics and learning,Graph-
Scope Flex features an extensive built-in library containing various
common algorithms across different domains, including iterative
algorithms 5 and GNN models 7 . To further enhance the func-
tionality of GraphScope Flex, it also provides interfaces 6 for the
development of new algorithms.
Execution Engine Layer. The components in the execution engine
layer are categorized into three specialized groups: The interactive
engines for graph querying and pattern matching, the analytical
engine for graph analysis, and the learning engine dedicated to
graph-based machine learning. A key attribute shared among these
engines is their proficiency in efficient, distributed processing of
queries and algorithms on large-scale graph data. As a query or
algorithm is received,GraphScope Flex compiles it into a distributed
execution plan, which is partitioned across multiple compute nodes
for parallel processing. Each partition independently operates on

389

GraphScope Flex: LEGO-like Graph Computing Stack SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

its own compute node and synchronizes with other partitions via
a coordinator. This section introduces these engines, with more
comprehensive details to be provided in Sections 5 - 7.
Graph Query Engines. Upon receiving a query from the frontend
layer, the query is parsed into a unified intermediate represen-
tation (GraphIR 8). This is followed by optimization through a
universal Query Optimizer 9 and catalog module. The optimized
logical plan employs code generation modules (10 and 11) to pro-
duce the corresponding physical plan. Two execution engines are
available, each targeting specific optimization goals. HiActor 12 , a
high-concurrency engine based on the actor model, is optimized
for high throughput. In contrast, Gaia 13 , a dataflow-based engine,
focuses on reducing query latency by leveraging data parallelism.
Analytical Engine. The analytical engine accommodates a variety
of programming models. This includes the widely adopted vertex-
centric model Pregel [56], the PIE model 14 based on subgraph-
centric programming [41], and the FLASH model 15 that supports
non-neighbor communications [53]. Underpinning these diverse
models is GRAPE 16 , a distributed high-performance analytical en-
gine. The GRAPE engine provides a set of highly optimized core op-
erators for fragment management, local evaluations on fragments,
and their communication. Moreover, it features auto-parallelization
of sequential algorithms for distributed environments, as well as
GPU acceleration capabilities.
Learning Engine. The learning engine is designated for training
GNN models. To facilitate this, GraphLearn 17 first samples the
graph data and extracts features. Subsequently, these features are
organized into batches and dispatched to a backend training engine,
which can be either PyTorch 18 or TensorFlow 19 .
Storage Layer. To address the challenges posed by diverse storage
formats and data access patterns,GraphScope Flex defines a unified
interface 20 for graph data management and access. This interface
enables seamless integration with various storage backends (21 -
24) and makes backend complexities transparent to the execution
engines. In Section 4, we will provide further details.
flexbuild and Customized Deployments. Similar to LEGO
bricks, not all components are designed to fit together arbitrar-
ily. Within each layer of GraphScope Flex, while components share
many core functionalities, each maintains its unique specializations.
To help users get a specialized stack for their own needs, we intro-
duce flexbuild, a utility tool that enables users to choose specific
components, build and generate their respective binaries or Docker
images. These artifacts can be deployed either on a cluster or a sin-
gle machine, allowing for customized deployments of GraphScope
Flex. For instance, in the real-world example described in Section
1, the engineers focusing on Workload 2 might select components
1 5 14 16 20 22 . Utilizing flexbuild, they can build these compo-
nents into a Docker image and deploy it on a cluster to provide a
service for anti-fraud tasks. In contrast, a data scientist addressing
Workload 5 may opt for components 2 4 8 4 9 11 13 20 23 . With
flexbuild, these components can be compiled into a binary and run
on a single machine for BI analysis. For ease of use, flexbuild simpli-
fies common graph computing tasks with predefined templates and
a command-line wizard that assists users in selecting compatible
components and generating deployment artifacts.

trait_vertex_list_array
adjacency

index
partition

predicate

property

common

GRIN
VERTEX_LIST get_vertex_list(GRAPH);
size_t get_vertex_list_size(GRAPH, VERTEX_LIST);
VERTEX get_vertex_from_list(GRAPH, VERTEX_LIST, size_t);

ADJ_LIST get_adj_list(GRAPH, DIRECTION, VERTEX);
ADJ_LIST_ITER get_adj_list_begin(GRAPH, ADJ_LIST);
void get_next_adj_list_iter(GRAPH, ADJ_LIST_ITER);
bool is_adj_list_end(GRAPH, ADJ_LIST_ITER);
VERTEX get_nbr_from_adj_list_iter(GRAPH, ADJ_LIST_ITER);

trait_vertex_list_iter
trait_edge_list_array

trait_edge_list_iter

trait_adj_list_array
trait_adj_list_iter

trait_schema
trait_labeled_vertex

…

trait_vertex_propertie
…

…

(a) GRIN API sample: vertex access

GRIN traits

Graph Query Engine

Storages:

Engines: Graph Analytics Engine

distributed property graph

…

…

property partition

… …

adjacency predicate common …

local simple graph

provides

requires optional

(b) Storage backends implemented specific traits.

Figure 4: The design of GRIN

4 STORAGE LAYER
The storage layer consists of a set of storage backends in Graph-
Scope Flex, as well as GRIN, a Graph Retrieval INterface above
them to provide unified retrieval abilities for the execution layer.

4.1 GRIN, Unified Graph Retrieval Interface
The GRIN in GraphScope Flex is a language-agnostic interface
designed to facilitate integration between diverse execution en-
gines and storage backends. It provides comprehensive and well-
defined APIs for graph retrieval, tailored to accommodate the varied
graph retrieval requirements of execution engines and the distinct
data models and access patterns of storage backends. This design
not only simplifies the implementation of retrieval functionalities
across different systems but also ensures that storage backends can
clearly communicate their capabilities and limitations. The essence
of GRIN lies in its ability to enable various storage backends to
“interlock” effectively with engines, embodying themodular, LEGO-
like approach central to the GraphScope Flex architecture.

In particular, the GRIN is defined in C language, which makes
it portable to systems written in other languages. Based on a thor-
ough analysis of the graph retrieval requirements of the execution
engines in GraphScope Flex, it abstracts the requirements into six
categories as shown in the left side of Figure 4. The adjacency
category forms the core of graph abstractions, such as vertices and
edges. Based on it, the property and partition categories cover
the data models of property graphs and partitioned graphs, which
are widely used in graph databases and distributed graph process-
ing systems respectively. The remaining three categories of index,
predicate and common are designed to address the auxiliary graph
operations and common system requirements, such as indexing,
predicate-pushdown and error handling.

To further characterize the graph retrieval requirements, handles
(e.g., ADJ_LIST) and APIs (e.g., get_adj_list(...)) for graph en-
tities and their operations are defined under several traits within
each category. For example, the array-like and iterator-based ac-
cess are two common ways to traverse a list structure, and the
adjacency category contains corresponding traits for list han-
dles, such as vertex and adjacent list. Figure 4(a) illustrates the APIs
defined under the array-like access trait for vertex list and the
iterator-based access trait for adjacent list.

390

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

For storage backends, they can only provide the traits that are
feasible for their own system capabilities and limitations. Similarly,
an engine will may only require or optionally support some traits.
In this way, a graph analytical algorithm such as PageRank will
work on a property graph, as property graph storages will provide
the traits for adjacency and partition as shown in Figure 4(b).

4.2 Storage Backends
As shown in Figure 3, GraphScope Flex offers various storage back-
ends implemented GRIN APIs. In this subsection, we will introduce
some of them, each tailored to specific use cases.
Vineyard. Vineyard [80] is an in-memory immutable data manager
that offers out-of-the-box high-level abstraction and zero-copy shar-
ing for distributed data in big data tasks, such as graph analytics,
numerical computing and machine learning.

In GraphScope Flex, Vineyard serves as the backend storage for
in-memory graphs. It adopts the property graph data model and
handles graph partitioning using edge-cut partitioning. In order to
optimize graph retrieval, Vineyard provides various built-in indices
such as CSR and CSC representations for graph structures, and
internal ID assignment to vertices. These features allow Vineyard to
effectively implement most of the GRIN traits.
GART. Graph data is not always static. Sometimes both the graph
topology and the properties of vertices/edges may be updated. To
accommodate such scenarios, GraphScope Flex has incorporated
a mutable in-memory graph storage, GART [66], which supports
multi-version concurrency control (MVCC) for dynamic graph data.

Specifically,GART always provides consistent snapshots of graph
data (identified by a version), and it updates the graph with the ver-
sion number𝑤𝑟𝑖𝑡𝑒_𝑣𝑒𝑟𝑠𝑖𝑜𝑛. For read operations, a compact graph
representation like CSR is the optimal choice, though it suffers
from the costly overheads of write operations. Conversely, adja-
cency lists based on linked lists are efficient for write operations but
perform poorly in read operations due to inadequate data locality.
To ensure high performance for both read and write operations,
GART employs an efficient and mutable CSR-like data structure.
GraphAr. GraphAr [17] (short for “Graph Archive”) is a standard-
ized file format designed for efficient storage of graph data on
both local and cloud file systems. It is developed on top of Apache
ORC [13] and Parquet [14], two widely used columnar storage
formats in the big data ecosystem. GraphAr serves as the default
persistent format for GraphScope Flex, improving the performance
of data loading and graph construction. Additionally, it can be
directly used as a data source for applications by integrating GRIN.

One of the key features of GraphAr is its ability to efficiently par-
tition graph data into multiple data chunks, allowing for targeted
retrieval and parallel processing without the burden of loading the
full graph into memory. Furthermore, GraphAr empowers certain
graph-related operations to be executed directly at the storage layer,
such as retrieving vertices with a specific label or fetching the neigh-
bors of a given vertex, using its built-in indexes. These capabilities
improve data management and performance, making GraphAr an
effective archive format for interoperability in graph computing.
In GraphScope Flex, the lack of overlapping storage backends re-
moves the need for replica maintenance, while GraphAr serves as
the intermediary for infrequent data exchanges between them.

(c) The Logical DAG (d) The Physical DAG

FLATMAP [FUSE]

SOURCE [GET_VERTEX]
type = Person

alias = a
pred = Expr{ a.username = "A1" }

EXPAND_EDGE
type = KNOWS

dir = OUT,

GET_VERTEX
type = Person,

opt = IN,
alias = b,

FLATMAP [FUSE]

EXPAND_EDGE
type = Buy
dir = OUT,

GET_VERTEX
type = Item,

opt = IN,
alias = c,

MAP [PROJECT]
Expr { b.username, c.price }

(e) Dataflow

Codegen

FUSE

GET_VERTEX
type = Person

alias = a
pred = Expr{ a.username = "A1" }

EXPAND_EDGE
type = KNOWS

dir = OUT,

GET_VERTEX
type = Person,

opt = IN,
alias = b,

FUSE

EXPAND_EDGE
type = Buy
dir = OUT,

GET_VERTEX
type = Item,

opt = IN,
alias = c,

PROJECT
Expr { b.username, c.price }

Optimize

MATCH START

GET_VERTEX
type = Buyer

alias = a

EXPAND_EDGE
type = Buy
dir = OUT,

GET_VERTEX
type = Buyer

alias = b

EXPAND_EDGE
type = Knows

dir = OUT,

GET_VERTEX
type = Buyer,

opt = IN,
alias = b,

GET_VERTEX
type = Item,

opt = IN,
alias = c,

MATCH END

PROJECT
Expr{ b.username, c.price }

SELECT
Expr{ a.username = "A1" }

Parse
(b) Cypher Query

g.V().hasLabel('Buyer').match(as('a').out('Knows').as('b'),
 as('b').out('Buy').as('c'))
 .filter(expr("a.username=\'A1\'"))
 .select('b','c').by('username').by('price')

MATCH (a:Buyer)-[:Knows]->(b:Buyer),
 (b)-[:Buy]->(c:Item)
WHERE a.username = "A1"
RETURN b.username, c.price

(a) Gremlin Query

Figure 5: Compilation process of IR-based interactive stack.

5 GRAPH QUERYING
Our work in GraphScope[40] introduced an interactive engine em-
ploying the Gremlin[64] language for queries, complemented by
theGaia [63] engine for their distributed execution. However, as ap-
plications burgeoned on GraphScope, we confronted multifaceted
challenges pertaining to both the query interface and the runtime.

As mentioned in Section 2.3, users may have varying preferences
for query languages, such as Gremlin and Cypher. Additionally, the
upcoming standardization of ISO/GQL [18] also necessitates the
development of a new query interface.

On the runtime front, Gaia’s design, being a data-parallel, batch-
ing system, is tailored for parallel execution of fairly intricate
queries on large graphs - a natural fit for the OLAP domain. Yet
many other applications fit the OLTP paradigm, demanding effi-
cient processing of small, high-concurrency queries. Gaia, due to
its design, struggles to fulfill these specific OLTP requirements.

To address these challenges, we have developed a novel inter-
active stack of GraphScope Flex for graph queries. This stack in-
tegrates a graph Intermediate Representation (IR) abstraction, de-
signed to capture the shared functionalities across diverse query
interfaces. Accompanying this is an optimizer anchored in equiva-
lent transformation rules specific to IR, along with two specialized
code generators for the Gaia [63] and HiActor [52] engines. These
engines adeptly manage OLAP and OLTP workloads, respectively.

5.1 The IR Abstraction
The IR abstraction aims to encapsulate common functionalities
present across various graph query interfaces. This approach en-
sures that the parser, optimizer, and code generators are developed
in an unified manner, circumventing duplicate efforts. As an il-
lustration, consider Gremlin and Cypher shown in Figure 5, both
of which express the query: “finding the purchased items’ prices
of friends.” While the two queries evidently differ in syntax (they
might also diverge in query semantics [28], though exploring this
further lies outside the scope of this paper), they exhibit common
functionalities that blend graph operations with relational opera-
tions. A case in point is their shared execution of graph pattern
matching to identify items purchased by friends, followed by rela-
tional projection to extract specific properties of interest during the

391

GraphScope Flex: LEGO-like Graph Computing Stack SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

search process. The evolving ISO/GQL query language [18] also
demonstrates similar characteristics.

To address this, we devised the IR abstraction, which is tailored to
semantically encapsulate the fundamental commonalities inherent
in various graph query languages. At its core, the IR abstraction
defines a data model 𝐷 and a set of operators Ω. The model 𝐷
manifests as a schema-like structure, where each data field has
a String-typed name complemented by a specific data type. Such
data types can range from primitive (like Integer, Float, String) to
composite (such as List, Map), or most importantly graph-associated
types. The graph-associated types encompass Vertex, Edge, and
Path, each carrying supplementary properties. For example, a Buyer
vertex 𝑣 , as depicted in Figure 2, has id that is a unique identifier,
type that is Buyer, and properties of username and credits.

Each operator in Ω processes a set of data tuples from 𝐷 and
yields another set of data tuples. These operators can be divided
into two categories: graph operators and relational operators.
• Graph Operators: Central to Ω are operators specific to graph
operations. They include actions such as expanding adjacent
edges from vertices (EXPAND_EDGE), retrieving end vertices from
edges (GET_VERTEX), and executing patternmatching (MATCH_START,
MATCH_END). These operators are illustrated in Figure 5(c).

• Relational Operators: This category emphasizes operations
that project property values from vertices and edges (PROJECT),
filter vertices and edges based on specific criteria (SELECT), and
structure results by sequence (ORDER) or by categorization (GROUP).
Such operators are commonly used with relational databases.
For any pair of operators 𝑜1 and 𝑜2 within Ω, a data connection

can be established between them if the output data tuples from 𝑜1
align with the input requirements of 𝑜2. This capability is crucial
for constructing a directed acyclic graph (DAG) that encapsulates
the computational logic of a query, often referred to as the compu-
tational DAG. This DAG will be used in two distinct stages:
• Logical Stage: This is the initial stage where the query is parsed
and transformed into a semantic representation. It primarily
focuses on capturing the semantic of the query, independent of
how the query will be executed.

• Physical Stage:Derived from the logical stage through optimiza-
tion processes, the physical stage concretizes the execution plan
for the query. It delineates the specific operations and execution
order required to fulfill the query.
Figure 5(c) illustrates the logical DAG, the semantic interpreta-

tion of both the Gremlin and Cypher queries. Next, we will delve
into the physical DAGs and their role in query execution.

5.2 IR-based Optimizer
Given the logical DAG, the fundamental goal of the IR-based opti-
mizer is to convert it into an optimized physical DAG for efficient
execution. This transformation is achieved through a combination
of Rule-Based Optimization (RBO) and Cost-Based Optimization
(CBO), taking into account both semantic equivalence and the phys-
ical context, such as the capabilities of the underlying graph store,
which can be deduced from the GRIN interface (refer to Section4.1).

Before diving into the details, we define a pattern graph as a
concise graph 𝑝 , and the process of matching this pattern involves

identifying all subgraphs within the data graph 𝐺 that are isomor-
phic to 𝑝 . For instance, both the Gremlin and Cypher queries in
Figure 5 involve matching a pattern graph that navigates from a
Buyer vertex "a" to an Item vertex "c" via another Buyer vertex
"b". One of the matched instance in the data graph of Figure 2 can
be written as {a:1, b:2, c:3}, where each key-value pair, such as a:1,
indicates mapping from a pattern vertex "a" to a data vertex "1".
Rule-based Optimization. The RBO process involves the appli-
cation of a set of predefined heuristic rules to the logical DAG,
ensuring that the query’s semantics remain unaltered. We highlight
two rules that are most commonly applied:
EdgeVertexFusion. In numerous graph queries, the EXPAND_EDGE op-
erator is frequently succeeded by a GET_VERTEX operator, indicating
the retrieval of neighboring vertices rather than adjacent edges.
To streamline this process, we apply the EdgeVertexFusion rule,
which merges the EXPAND_EDGE and GET_VERTEX operators into a
unified, fused operator whenever it is pragmatically possible. The
conditions under which these two operators can be combined vary.
For example, fusion may not be feasible in distributed scenarios
where property retrieval is required in GET_VERTEX. An illustration
of this fused operator after applying the rule is shown in Figure 5(d).
FilterPushIntoMatch. Both the GET_VERTEX and EXPAND_EDGE oper-
ators in our design are capable of accepting a predicate as a parame-
ter, enabling immediate filtering of vertices and edges upon retrieval
from the graph store. While it is a common practice for users to
apply the SELECT operation after pattern matching, as exemplified
by the queries in Figure 5, our system implements the FilterPush-
IntoMatch rule to optimize this process. This rule actively pushes
the predicate from the SELECT operator into the pertinent graph
operators. The application of the FilterPushIntoMatch rule serves
a dual purpose: it not only diminishes the volume of intermediate
data, enhancing performance, but also facilitates the possible down-
ward propagation of predicates, optimizing data retrieval at the
store level. As illustrated in Figure 5(d), the predicate a.username =
“A1” is effectively pushed into the GET_VERTEX operator associated
with vertex "a", exemplifying this optimization in action.
Cost-based Optimization.We have incorporated insights from
our previous research, GLogue [49], to process CBO for the Inter-
active stack. Given that graph pattern matching is a crucial and
computationally intensive component [28] of graph queries, op-
timizing its execution is the main focus of GLogue. In GLogue,
our approach entails tracking patterns ranging from the smallest,
single-vertex patterns to the largest, encompassing patterns with up
to 𝑘 vertices, along with an estimation of each pattern’s frequency.
Here, the term “frequency” of 𝑝 refers to the count of matched
instances in 𝐺 . As the execution plan for matching a pattern graph
𝑝 inevitably requires the computation of various subgraphs (a sub-
graph is defined as a graph comprising a subset of the original
graph’s vertices or edges), the cost of an execution plan can be
determined by summing the estimated frequencies of all relevant
subgraphs, retrievable from GLogue. Consequently, the execution
plan with the lowest associated cost is considered optimal.

In Figure 5, the transition from the logical DAG to the physical
DAG, orchestrated by the cost-based optimization (CBO) process,
results in an obvious structural transformation. Initially, the logical
DAG exhibits a bifurcated structure, which is then altered into a

392

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

linear chain in the physical DAG. This restructuring is particularly
evident in the treatment of the vertices aliased as "b". By merging
these vertices in the physical DAG, we effectively eliminate the
need for a separate scanning operation for the "b"-aliased vertex,
thereby reducing the associated cost.

5.3 Code Generation
The final step of compilation transforms the non-executable physi-
cal Directed Acyclic Graph (DAG) into executable code, varying for
the Gaia engine in Online Analytical Processing (OLAP) or the Hi-
Actor engine in Online Transaction Processing (OLTP). TheGaia en-
gine, using a dataflow model similar to our Intermediate Represen-
tation (IR), processes data with operators like MAP and FLATMAP. We
map each IR operator in the DAG to a corresponding Gaia opera-
tor, maintaining connections between operators. This transforma-
tion is depicted in Figure 5(e). Initially, the GET_VERTEX operator
is converted into a SOURCE operator, initiating the computation.
Then, the operators intended for neighbor retrieval are mapped
to FLATMAP operators, representing the one-to-many vertex-to-
neighbor relationship. Lastly, the PROJECT operator is adapted into
a MAP operator, transforming each vertex into its property value.

6 GRAPH ANALYTICS
For graph analytics, GraphScope Flex provides user-friendly inter-
faces and a high-performance graph analytical engine GRAPE [41].
User-Friendly Interfaces. For the convenience of users, Graph-
Scope Flexoffers built-in algorithm packages. These packages fea-
ture APIs that are compatible with NetworkX [3], GraphX [9], and
Giraph [1] interfaces, enabling users to enjoy the performance im-
provements offered by the software without having to modify the
original code implemented in other systems.

If the built-in packages cannot meet user needs, the software pro-
vides Python/C++/Java SDKswith various programming paradigms,
allowing users to employ the programming paradigm with which
they are most familiar to implement complex algorithmic logic.
For example, users can use the Pregel API to implement vertex-
centric algorithms, or they can write sequential algorithms using
the subgraph-centric PIE model [41]. Alternatively, users can utilize
the FLASH model [53], which supports algorithms that utilize non-
neighbor communication and offers great expressive capability.
High Performance Analytical Engine. At the core of the ana-
lytics stack in GraphScope Flex is GRAPE [41], a distributed graph
computing engine with the capability for auto-parallelization of
sequential algorithms. To enhance its capabilities, we have incorpo-
rated Ingress [44] to facilitate algorithm auto-incrementalization,
supplementing the generality of GRAPE’s PIE model. GRAPE sup-
ports two types of backend to execute the graph analytic algorithms:
The CPU backend. GRAPE supports acceleration of graph operators
with SIMD components such as AVX2 and AVX512 on the CPU
backend, and emphasizes on optimizing communication and mem-
ory overhead across multiple nodes. In terms of communication,
GRAPE trades latency for throughput. It aggregates fragmented,
randomly distributed small messages in memory into a continuous
compact buffer before dispatching them all at once, thus enhancing
bandwidth utilization. Furthermore, it employs varint encoding and
perfect hash to reduce peak memory usage.

The GPU backend. Since many graph algorithms can significantly
benefit from GPU acceleration, we have integrated GPU support
into theGRAPE engine. While GPU cores are often less powerful in-
dividually than CPU cores, they compensate with a greater number
of cores and higher memory bandwidth. For intra-GPU, GRAPE in-
tegrated multiple load balance thread mapping and GPU-friendly
data structure [59] to improve the GPU utilization. For inter-GPU,
GRAPE employs a work-stealing strategy to dynamically balance
GPU workloads [58]. Idle GPU cores will steal work from busy ones
to maximize GPU utilization on the fly.

7 GRAPH LEARNING
Optimizing distributed GNN training on large-scale graphs in in-
dustrial settings is challenging. First, there’s an imbalance in com-
putational demands between sampling and training. GPU training
often has much higher throughput than CPU-based sampling, lead-
ing to poor resource utilization and suboptimal overall throughput.
Second, the network and I/O overheads from distributed graph sam-
pling, feature extraction, and data transfer between host and device
significantly extend training sample preparation time. The learn-
ing stack in GraphScope Flex addresses these issues by effectively
parallelizing and pipelining the sampling and training processes.
Decoupled Sampling & Training. Given the observation that the
computational demands of sampling and training are asymmetri-
cal, the learning stack adopts a decoupled design that physically
isolates the sampling and training processes. This design supports
independent scaling of sampling and training to accommodate op-
timal resource utilization and enhance the training throughput. For
instance, due to the high costs of GPU instances, it is often more
economically efficient to deploy a CPU cluster for graph sampling
and feature collection, while reserving GPU instances for training.
Asynchronous Pipelining. To overlap sampling computation
and network communication, sampling processes are designed to
concurrently perform subgraph sampling and feature collection
for multiple batches. The process of multi-hop graph sampling is
modeled as a dataflow, where each node represents a sampling hop,
and the edge indicate the data dependency between consecutive
hops. Feature collection is listed as the sink node in the dataflow.
Since graphs are partitioned in a distributed manner, each node in
the dataflow is parallelized across the graph partitions as distinct
tasks.While awaiting the completion of a specific task, the sampling
process schedules the execution of other tasks (belonging to the
same or different batches) to avoid being blocked by a single task.
To prevent training processes from idling while waiting for inputs, a
prefetch mechanism is employed to continuously retrieve data from
the sample channel to a prefetch cache for each training process.
Compatible with Open-source GNN Stack The learning stack
supports both TensorFlow [25] and PyTorch [22] as the training
backend. To enrich themodel library that users can trainwithGraph-
Scope Flex, the data-layer APIs in learning stack are designed to be
compatible with PyTorch Geometric (PyG) [23]. PyG models can
be trained in GraphScope Flex with minimal modifications.

8 USE CASES
To check the flexibility and effectiveness of the modular and dis-
aggregated design of GraphScope Flex, we have deployed it in a

393

GraphScope Flex: LEGO-like Graph Computing Stack SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

ow
ns

 60
%A B C D

1 2 3

owns 20%

owns 10%

owns 70%

owns 80% owns 30%

ow
ns

 30
%

CompanyPerson

1

f

Fraud seeds

knows
buy

buy

indirect rel.

Accounts Items

A B

UserItem Review

Are they friends?

?
(a) (b) (c)

Figure 6: Use cases

variety of real-world scenarios. Below, we delve into some of these
instances to showcase the diverse deployments of GraphScope Flex.
Real-time Fraud Detection. E-commerce platforms process tens
of thousands of customer orders every second. Among these, some
may be fraudulent. For instance, certain orders might forge genuine
purchasing behavior to artificially boost the popularity of specific
items. As a simplified example of real-time detection, it is to identify
suspicious transactions by checking each order against fraud seeds
– accounts previously identified with known frauds. For an account
with id=1, the following Cypher query checks for direct or indirect
co-purchasing with fraud seeds, as depicted in Figure 6(a):

MATCH (v:Account{id:1})-[b1:BUY]->(:Item)<-[b2:BUY]-(s:Account)

WHERE s.id IN SEEDS AND b1.date-b2.date < 5 /*within 5 days*/

WITH v, COUNT(s) AS cnt1

MATCH (v)-[:KNOWS]-(f:Account), (f)-[b1:BUY]->(:Item)<-[b2:BUY]-(s:

Account) WHERE s.id IN SEEDS WITH v, cnt1, COUNT(s) AS cnt2

WHERE w1 * cnt1 + w2 * cnt2 > threshold

RETURN v

To facilitate such queries, we deploy GraphScope Flex for OLTP
graph queries, utilizing HiActor as the computing engine, and
GART as the storage engine. When an order is placed, an (Account)-
[Buy]-(Item) edge is added to GART, leveraging its dynamic graph
storage capability. This query is executed inGraphScope Flex. If the
query returns any records, indicating that the weighted average of
the number of direct and indirect relationships exceeds a predefined
threshold, an alert will be triggered. This preemptive step is vital
to prevent direct lodging of potentially fraudulent orders.
Equity Analysis. In the context of financial analysis, analysts
frequently aim to identify the dominant shareholders responsible
for steering a company, typically those who cumulatively hold more
than 51% of the company’s shares. It is non-trivial to find the answer
in real-world scenarios. For instance, Company 1 in Figure 6(b) is
owned by Person A alongside a sequence of corporate shareholders.
The objective for analysts is to ascertain the genuine controller of
Company 1, i.e., Person C, who holds 51% of the shares: 0.8 × 0.6
through Company 2 and 0.8 × 0.3 × 0.7 via Company 3.

This task can be tackled using a GraphScope Flex deployment
equipped with analytical modules. In graph modeling, both share-
holders and companies are represented as vertices, while invest-
ments are depicted as edges. Each edge carries a weight, indicating
the share percentage. Within the frontend layer, users opt to im-
plement a modified label propagation algorithm with the GraphX
API. This algorithm calculates the shares for each company during
each propagation iteration. Subsequently, the algorithm is bundled
into a jar and executed on GRAPE, the high-performance analytical
engine in the engine layer of GraphScope Flex. In the storage layer,
GRIN selects the in-memory store Vineyard as the storage backend
to managing the rarely modified graph data.
Social Relation Prediction. Social relations on e-commerce plat-
forms are crucial, as they provide insights into user behavior and

preferences, facilitating targetedmarketing and personalized recom-
mendations. However, these platforms often lack a complete social
network of users, unlike social network platforms. Graph Neural
Networks (GNNs), such as NCN [75], are employed to predict po-
tential unobserved relationships between users, thereby enriching
the social connections on e-commerce sites. The NCN’s sampling
phase, depicted in Figure 6(c), involves extracting first-order com-
mon neighbors for each training edge’s vertices and performing
k-hop subgraph sampling around each common neighbor. This task
is particularly challenging in terms of computational demand and
complexity, especially for large-scale graphs.

The learning stack in GraphScope Flex can efficiently support
training NCN on billion-scale graphs. Depending on the graph scale,
the sampling servers in GraphLearn can be flexibly scaled out to
enhance the sampling throughput. To accommodate heterogeneous
hardware and improve resource utilization in sampling servers, the
learning stack also supports configuring the sampling devices (CPU
or GPU) and the concurrency of sampling processes in each server.
Training servers asynchronously pull the sampling results from
sampling servers and can be scaled to match the sampling through-
put. As the original social relation graph remains unchanged and
will be frequently accessed during training, Vineyard is selected as
the storage backend due to its I/O efficiency. Graph data in Vine-
yard are accessed by sampling processes through GRIN.
CybersecurityMonitoring.Cybersecurity represents a paramount
concern for numerous enterprises, with a particular emphasis on
thwarting Trojan attacks. We detailed the task and its Gremlin-
based solution in our previous work [40]. With flexbuild, users can
effortlessly select pertinent components from GraphScope Flex to
construct a tailored graph BI stack optimized for this specific task.

9 EVALUATIONS
In this section, we evaluateGraphScope Flex’s capability of efficient
processing of large graphs for both synthetic workloads and the
real-world applications described in Section 8.

9.1 Supported Scenarios
Before delving into the performance evaluation, we initially analyze
the capabilities of GraphScope Flex in comparison to GraphScope.
By incorporating diverse components with specialized function-
alities, GraphScope Flex significantly expands the range of sup-
ported scenarios in graph computing compared to its predecessor.
Table 1 outlines the scenarios supported by each system.

9.2 Synthetic Workloads
Using synthetic workloads, we assessed the performance of the
storage layer and various deployments on GraphScope Flex. The
datasets and their abbreviations are listed in Table 2. If not otherwise
mentioned, all experiments were conducted on a managed K8s

394

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

Table 1: Supported scenarios comparison.

Scenario GraphScope GS Flex

Python and Gremlin interface ✓ ✓
Querying graph in Cypher × ✓
Complex offline graph queries ✓ ✓
High-throughput online graph queries × ✓
Iterative graph analytics ✓ ✓
Sampling and training on graph data ✓ ✓
Computing on an in-memory graph ✓ ✓
Computing on a graph with persistent store × ✓
Graph view synced with a relational DB × ✓
Graph data sharing with other graph systems × ✓

cluster consisting of 8 nodes. Each node was equipped with dual
26-core Intel(R) Xeon(R) Platinum CPUs at 2.50GHz and 768 GB of
memory. The nodes were interconnected via a 50 Gbps network.
Exp-1. Storage Performance. We evaluate the effectiveness of
GRIN and test the performance of GART and GraphAr, which are
the newly introduced storage backends in GraphScope Flex.

Firstly, to showcase effectiveness of GRIN which makes backend
complexities transparent to the execution engines, we conduct
experiments on three applications with varying storage backends.

The applications are PageRank(on CF), BI-Querying(on SNB-30)
and GNN-Training(on PD) which are typical workloads of the graph
analytics, interactive query and graph learning respectively, while
the backends are Vineyard, GART, and GraphAr introduced in Sec-
tion 4.2. UsingGRINAPIs to access the graph data, each application
is implemented only once and can be deployed on different stor-
age backends. We report the execution time of PageRank, average
querying time of BI queries and one-batch training time of GNN in
Figure 7(a). We can see that all the combinations can generate cor-
rect results in a reasonable time. Generally, Vineyard is the fastest
backend due to its in-memory and immutable design. GART is
slower, as its more complex architecture accommodates dynamic
updates. GraphAr, being the slowest, incurs extra I/O overheads
for direct data retrieval due to its archiving-focused design.

To further demonstrate the effectiveness of GRIN, we compare
the performance of GraphScope Flex with the baseline (i.e., the
original GraphScope without GRIN). In GraphScope, the execution
engines are tightly coupled with the only default storage backend
Vineyard, so that the graph retrieval implementations are specif-
ically optimized for Vineyard and cannot be easily extended to
support other backends. As shown in Figure 7(b), one may find
that the performance of GraphScope Flexwith GRIN is comparable
to baseline for all three applications, with only a slight overhead
less than 8%. This means that GRIN does not introduce significant
overheads to GraphScope Flex.

Next, we demonstrate the efficiency of GART, which provides
high performance read operations on graph data while allowing
updates to graph data. To see this, we compared the read perfor-
mance (measured by edge scan throughput) with a state-of-the-art
dynamic graph storage LiveGraph [88] and a static graph storage
CSR, on four datasets (UK, CF, TW and SNB-30). Note that the perfor-
mance of CSR is the upper bound of a dynamic graph storage as it
assumes the graph is immutable. As shown in Figure 7(c), on aver-
age GART outperforms LiveGraph 3.88× on read performance, and
can achieve 73.5% throughput compared with static graph storage.

Table 2: Datasets used in synthetic workloads.

Abbr. Dataset |V| |E|

FB0 datagen-9_0-fb [19] 12.8M 1.05B
FB1 datagen-9_1-fb [19] 16.1M 1.34B
ZF datagen-9_2-zf [19] 434.9M 1.04B

G500 graph500-26 [19] 32M 1.05B
WB webbase-2001 [37] 118M 1.71B
UK uk-2005 [37] 39.5M 1.57B
CF com-friendster [50] 65.6.5M 1.81B
TW twitter-2010 [50] 41.7M 1.47B
IT it-2004 [37] 41M 1.15B
AR arabic-2005 [37] 22.7M 1.11B
PD ogbn-products [26] 2.4M 62M
PA ogbn-papers100M [26] 111M 1.6B

SNB-30 Datasets (-x for scale factor x) gen-
erated for LDBC social network
benchmark [10]

89M 541M
SNB-300 817M 5.27B
SNB-1000 2.69B 17.79B

Lastly, we compare the performance of building graphs from
external storages in the format of GraphArwith the baseline, where
the datasets are in CSV format. The results are shown in Figure 7(d).
We can see thatGraphAr can significantly improve the performance
of graph construction, with a speedup of around 5× for all datasets.
Exp-2. Graph Query Performance.We evaluate the performance
of GraphScope Flex for processing graph queries, demonstrating
the effectiveness of the query optimization including RBO and CBO
(Section 5), and the efficiency of the deployments of GraphScope
Flex for handing OLTP and OLAP queries, respectively.

To evaluate the effectiveness of query optimization in Graph-
Scope Flex, based on the LDBC Social Network Business Intelligence
(SNB-BI) workloads [69], we generated three distinct sets of queries,
which are referred to as Q1, Q2, and Q3 as given in [24]. Each set
comprises four queries designed to specifically test different opti-
mization strategies: the EdgeVertexFusion and FilterPushIntoMatch
rules in RBO, and the CBO strategy. The experiments were con-
ducted on a single node of the cluster. Figure 7(e) shows the per-
formance gain with RBO optimization: the EdgeVertexFusion rule
yielded an average speedup of 2.9×, and the FilterPushIntoMatch
rule achieved an impressive average speedup of 279×. Similarly,
queries optimized with CBO performed 11× better compared to
those without CBO.

For the performance of GraphScope Flex in processing OLTP-
like queries, we present the official audit results from the LDBC
Social Network Interactive Benchmark [39]. We deployed Graph-
Scope Flex as the OLTP graph querying stack, with HiActor serving
as the computing engine. To align with the existing reports in [15],
the benchmark was conducted on a single machine with a CPU of
24 cores and 384GB of memory. Figure 7(f) reports the auditing
results [15] of GraphScope Flex against TuGraph on the SNB-300
dataset, displaying the average latency for 14 complex queries (C1-
C14), 7 short queries (S1-S7), and 8 update queries (U1-U8) in the
benchmark. The results show GraphScope Flex outperforms Tu-
Graph in all queries except C5, achieving an average speedup of
8.92×. Furthermore, the recorded throughput forGraphScope Flex is
33,261 ops/s, which is 2.45× higher than TuGraph’s 13,532 ops/s.

To assess the performance of GraphScope Flex in handlingOLAP-
like queries, we utilized the LDBC SNB-BI workloads [69]. In this

395

GraphScope Flex: LEGO-like Graph Computing Stack SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

GraphScope Flex TuGraph TigerGraph PowerGraph Gemini GrouteGunrock

PageRank BI-Query GNN-Train

101

102

103

104

Ru
nt

im
e

(s
)

Vineyard
GART
GraphAr

(a) GRIN with backends
PageRank BI-Query GNN-Train

0

20

40

60

Ru
nt

im
e

(s
)

baseline
with GRIN

(b) GRIN overhead
UK CF TW SNB-30

0.0

0.5

1.0

1.5

2.0

Sc
an

 th
pt

 (G
 e

dg
es

/s
)

upper bound (CSR)
GART
LiveGraph

(c) Read performance of GART
AR CF G500 FB1 SNB-30

0
50

100
150
200
250

Lo
ad

in
g

Ti
m

e
(s

) baseline
with GraphAr

(d) Loading speedup of GraphAr

Q1.1 Q1.2 Q1.3 Q1.4 Q2.1 Q2.2 Q2.3 Q2.4 Q3.1 Q3.2 Q3.3 Q3.4

10 1

100

101

102

103

Ru
nt

im
e

(s
)

With OPT
Without OPT

(e) Query optimization

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1
0

Q1
1

Q1
2

Q1
3

Q1
4 S1 S2 S3 S4 S5 S6 S7 U1 U2 U3 U4 U5 U6 U7 U8

100

101

102

103

Ru
nt

im
e

(s
)

(f) OLTP-like queries

Q1 Q2
a

Q2
b Q3 Q4 Q5 Q6 Q7 Q8
a

Q8
b Q9

Q1
0a

Q1
0b Q1
1

Q1
2

Q1
3

Q1
4a

Q1
4b

Q1
5a

Q1
5b

Q1
6a

Q1
6b Q1
7

Q1
8

Q1
9a

Q1
9b

Q2
0a

Q2
0b

10 1

100

101

Ru
nt

im
e

(s
)

(g) OLAP-like queries
FB0 FB1 ZF G500 CF

100

101

102

Ru
nt

im
e

(s
)

(h) PageRank on CPUs
FB0 FB1 ZF G500 CF

10 1

100

101

Ru
nt

im
e

(s
)

(i) BFS on CPUs

CF WB UK IT AR

103

104

Ru
nt

im
e

(m
s)

(j) PageRank on GPUs
CF WB UK IT AR

102

Ru
nt

im
e

(m
s)

(k) BFS on GPUs
1 2 4

0

20

40

60

80

Ep
oc

h
Ti

m
e

(s
)

#GPUs

Dataset PD
Dataset PA

(l) Sampling, scale up.
1x2 2x2 4x2

0

10

20

30

40

Ep
oc

h
Ti

m
e

(s
)

#GPUs

Dataset PD
Dataset PA

(m) Sampling, scale out.
Figure 7: Performance evaluation

experiment, we configured GraphScope Flex with Gaia as the dis-
tributed computing engine, as outlined in Section 5 that is tailored
for OLAP queries. We conducted the SNB-BI benchmark evaluation
on the SNB-1000 dataset of the first snapshot that encompasses over
99% of the total data, executing a total of 20 queries (some queries
having different variants) with the frequency and parameters spec-
ifying by official auditing. As comparison, we gathered auditing re-
sults from TigerGraph [16], the state-of-the-art performance of the
SNB-BI benchmark. Our tests were conducted on a cluster of 4 ma-
chines that matched TigerGraph’s settings, including 64 CPU cores
(128 threads), and a total memory of 1.5TB. The average latency for
all queries are displayed in Figure 7(g). With the exception of query
12 and 20b,GraphScope Flex outperforms TigerGraph by an average
speedup of 10×. This is mainly due to GraphScope Flex’s sophisti-
cated optimizations and flexible deployment for various scenarios.
Exp-3. Graph Analytics Performance. To test the analytics per-
formance, we conducted evaluations using the LDBC Graphalytics
Benchmarks [19], comparingGraphScope Flexwith the state-of-the-
art CPU-based and GPU-based graph processing systems [12]. We
report the performance of PageRank and breadth-first search (BFS)

algorithms here,w.l.o.g. Figures 7(h) to 7(k) display the performance
of these algorithms across different systems and datasets, with
GraphScope Flex consistently outperforming others. Compared
with the CPU-based systems, it is on average 54.6× (resp. 4.2×) faster
than PowerGraph (resp. Gemini), up to 129.6× (resp. 8.0×). For GPU-
based systems, it is on average 3.3× (resp. 3.3×) faster than Groute
(resp. Gunrock), up to 9.5× (resp. 9.9×). For all dataset used, Graph-
Scope Flex outperforms other CPU-based and GPU-based graph
processing systems, and can process large graphs that other systems
failed to process. This is primarily attributed to GraphScope Flex’s
adaptive optimization, selecting optimal computing kernels for vari-
ous graph data, and topology-aware communication that efficiently
distributes workloads across GPU cluster units [58], accounting for
asymmetries like NVLink to maximize high-bandwidth link usage.
Exp-4. Graph Learning Performance. We evaluate the scalabil-
ity of the learning stack in GraphScope Flex by training a 3-layer
GraphSAGE model on the PA and PD datasets. The sampling fan-out
is set to [15, 10, 5] and the batch size is 1024. The nodes allocated in
this experiment are additionally equipped with 4 Nvidia A10 GPUs.
In both the single-node and distributed experiments, GPU sampling

396

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

Table 3: Throughput of the real-time fraud detection.

#threads 10 20 30 40
Throughput 98,907 184,826 279,005 355,813

is used with the number of sampling processes set equal to the num-
ber of GPUs. Figure 7(l) shows the results of scaling up experiments.
By increasing the number of GPUs, the end-to-end training time
per epoch decreases linearly. This is because each sampling pro-
cess handles a subset of the sampling workloads independently in
single-node training, increasing the number of sampling processes
can improve the training efficiency accordingly. The results of scal-
ing out experiments are presented in Figure 7(m). The number of
used GPUs in each node is fixed at 2. By increasing the number of
nodes from 1 to 4, we can observe an almost-linear boost in training
performance. This result shows that, despite longer batch execution
times in sampling processes due to network communication costs
in distributed sampling and feature collection, the asynchronous
pipelining and prefetch mechanism ensure nearly linear scaling out
performance in the learning stack of GraphScope Flex .

9.3 Real-World Applications
GraphScope Flex has beenwidely deployed in production at Alibaba,
and it supports about 50,000 graph jobs every day. Next, we report
results from production for the applications described in Section 8.
Exp-5. Real-time Fraud Detection. Our evaluation of the real-
time fraud detection was conducted on an extensive segment of
a real-life transaction graph. Our assessment went beyond the
Cypher query discussed in Section 8, incorporating several queries
that explore various relationships. In this scenario, numerous
clients continuously placed orders, each of which triggered a set
of mandatory queries, reflecting diverse relational checks. These
queries were executed across different CPU thread configurations
in GraphScope Flex, showcasing a range of cloud computational
resources from 10 to 40 threads. The results, detailed in Table 3,
demonstrate the system’s scalable nature, with throughput almost
linearly increasing with the number of active working threads.
Compared to the limitations of previous deployments, which strug-
gled under peak load, GraphScope Flex demonstrates a more than
30× improvement in throughput under similar configurations. This
highlights GraphScope Flex’s aptitude for meeting the dynamic
and high-volume requirements of real-world applications.
Exp-6. Equity Analysis. We evaluated the performance of equity
analysis using a graph constructed from open data on the equity
relationships of registered companies in China. This graph includes
0.3 billion vertices and over 1.5 billion edges. We compared the
GraphScope Flex deployment, as detailed in Section 8, against an
existing SQL-based baseline. The baseline, which stored data in re-
lational tables, checked each tuple (i.e., a company) and calculated
the shares among its shareholders. Despite incorporating numer-
ous approximations to reduce computational costs, the baseline
was unable to produce complete results. It allowed only a limited
number of tuples to be involved in the queries and required about 1
hour to process a small subset of the data. In contrast, GraphScope
Flex could generate all results within 15 minutes on the whole
graph, enabling its daily running in production and ensuring that
analysts always have access to the latest results.

Exp-7. Social Relation Prediction. The performance of predic-
tion was evaluated by training an NCN model on an in-house social
relation dataset, which consists of 10 million vertices and 200 mil-
lion edges. The training job was executed on a cluster comprising
30 nodes. In order to optimize end-to-end throughput, tailored to
the demands of sampling and training workloads, 10 nodes were
designated for sampling while the remaining 20 nodes were utilized
for training. The end-to-end training time per epoch is 1.5 hours,
which can be linearly scaled for large-scale graphs in production.
Exp-8. Cybersecurity Monitoring.With GraphScope Flex, we
upgrade the application reported in [40]. Practice shows thatGraph-
Scope Flex can subsume GraphScope without any performance
degradation, offering a concise and easy-to-maintain deployment
instead. Using graph traversal written in Gremlin, GraphScope
Flex achieves a speedup of 2,400× over the equivalent SQL queries.
Since the Trojan detection queries are two-hop graph traversals,
they avoid the costly join operations required in SQL queries.
Summary.Wefind the following. (1) The composition and function-
ality of the components within GraphScope Flex are both effective
and efficient. (a) GRIN effectively supports various storage back-
ends with a maximum performance degradation of 8%. (b) Graph-
Scope Flex outperforms leading systems in LDBC Social Network
Benchmarks, achieving 2.45× higher throughput than TuGraph in
SNB Interactive workloads, and an average of 10× smaller latency
than TigerGraph in SNB-BI workloads, respectively. (c) In graph
analytics, GraphScope Flex exceeds both CPU-based (Gemini, Pow-
ergraph) and GPU-based (Groute, Gunrock) systems, reaching up to
55.7 × (𝑟𝑒𝑠𝑝. 9.9×) faster performance. (d) GraphScope Flex shows
strong scalability in learning tasks, with up to 3.94 × (𝑟𝑒𝑠𝑝. 3.42×)
improvement when scaling from 1(1 × 2) GPUs to 4(4 × 2) GPUs.
(2) Better still, GraphScope Flex performs well in real-world appli-
cations. (a) It manages 355,813 qps in real-time fraud detection, and
significantly outperforming SQL-based solutions in cybersecurity
by over 2,400×. (b) It facilitates comprehensive full-data analysis in
equity analysis. and (c) It efficiently enables the daily training of
social relation prediction models and offers linear scalability.

10 CONCLUSION AND FUTUREWORK
GraphScope Flex addresses the limitations of the “one-size-fits-
all” solution by adopting a modular architecture, and users can
selectively deploy components of GraphScope Flex to meet their
specific requirements. Evaluations on both synthetic and real-life
cases show that GraphScope Flex can efficiently and flexibly han-
dle diverse application scenarios. Moving forward, GraphScope
Flex will persist in its evolution towards a high-performance and
user-friendly computing system for large-scale graph processing.
Future efforts will encompass these directions: (1) Enhancing exist-
ing components and introducing new ones, such as GQL support in
the frontend layer and additional storage backends in the storage
layer. (2) Developing a graph-specific ETL or transformation lan-
guage to streamline the integration of applications across different
graph models derived from the same dataset. (3) Additionally, in
scenarios blending graph tasks with SQL-like operations, a unified
compiler across multiple engines can significantly enhance work-
flow interoperability and expand the scope of graph computations.

397

GraphScope Flex: LEGO-like Graph Computing Stack SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

REFERENCES
[1] 2011. Apache Giraph. https://giraph.apache.org.
[2] 2013. W3C Sparql 1.1 Query Language. https://www.w3.org/TR/sparql11-query/.
[3] 2014. NetworkX. https://networkx.org/.
[4] 2014. W3C, Resource Description Framework (RDF). https://www.w3.org/RDF/.
[5] 2015. Apache TinkerPop. https://tinkerpop.apache.org.
[6] 2015. Cypher Query Language in Neo4j. https://neo4j.com/product/cypher-

graph-query-language/.
[7] 2017. JanusGraph. https://janusgraph.org/.
[8] 2018. GQL Standard. https://https://www.gqlstandards.org.
[9] 2018. Spark GraphX. https://spark.apache.org/graphx/.
[10] 2019. LDBC Social Network Benchmark. https://ldbcouncil.org/benchmarks/

snb/.
[11] 2019. TigerGraph. https://www.tigergraph.com/.
[12] 2022. Performance report of LDBC Graphalytics. https://github.com/alibaba/

libgrape-lite/blob/master/Performance.md.
[13] 2023. Apache ORC. https://orc.apache.org.
[14] 2023. Apache Parquet. https://parquet.apache.org/.
[15] 2023. Auditing results of LDBC SNB Interactive Workload. https://ldbcouncil.

org/benchmarks/snb-interactive/.
[16] 2023. Full Disclosure Report for TigerGraph of the LDBC Social Network Bench-

mark. https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_
tigergraph.pdf.

[17] 2023. GraphAr. https://github.com/alibaba/GraphAr.
[18] 2023. ISO graph query standard GQL. https://www.gqlstandards.org/.
[19] 2023. LDBC Graphalytics. https://ldbcouncil.org/benchmarks/graphalytics/.
[20] 2023. Neo4j. https://neo4j.com/.
[21] 2023. OntoText. https://www.ontotext.com/.
[22] 2023. PyTorch. https://github.com/pytorch/pytorch.
[23] 2023. PyTorch Geometric. https://github.com/pyg-team/pytorch_geometric.
[24] 2023. Queries used for the experiment of graph query optimiza-

tion. https://github.com/alibaba/GraphScope/tree/main/flex/resources/queries/
examples/store_procedure.

[25] 2023. TensorFlow. https://github.com/tensorflow/tensorflow.
[26] 2023. The Open Graph Benchmark (OGB). https://ogb.stanford.edu/.
[27] 2023. TuGraph, The Distributed Graph Database Behind AliPay. https://tugraph.

antgroup.com/.
[28] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (sep 2017), 40 pages.

[29] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, et al.
2023. PG-Schema: Schemas for property graphs. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–25.

[30] Dmitry Anikin, Oleg Borisenko, and Yaroslav Nedumov. 2019. Labeled property
graphs: SQL or NoSQL?. In 2019 Ivannikov Memorial Workshop (IVMEM). IEEE,
7–13.

[31] Saeid Azadifar, Mehrdad Rostami, Kamal Berahmand, Parham Moradi, and
Mourad Oussalah. 2022. Graph-based relevancy-redundancy gene selection
method for cancer diagnosis. Computers in Biology and Medicine 147 (2022),
105766.

[32] Nico Baken. 2020. Linked data for smart homes: Comparing RDF and labeled
property graphs. In LDAC2020—8th Linked Data in Architecture and Construction
Workshop. 23–36.

[33] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:
An Asynchronous Multi-GPU Programming Model for Irregular Computations.
In ACM Sigplan Symposium on Principles and Practice of Parallel Programming.
235–248.

[34] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[35] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
2019. Powerlyra: Differentiated graph computation and partitioning on skewed
graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019), 1–39.

[36] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algo-
rithms in the Language of Sparse Linear Algebra. ACM Trans. Math. Softw. 45, 4
(2019).

[37] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[38] Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein,
Jeen Broekstra, Michael Erdmann, and Ian Horrocks. 2000. The semantic web:
The roles of XML and RDF. IEEE Internet computing 4, 5 (2000), 63–73.

[39] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network
Benchmark: Interactive Workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’15). Association for

Computing Machinery, New York, NY, USA, 619–630.
[40] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,

Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope: a unified engine for big
graph processing. Proceedings of the VLDB Endowment 14, 12 (2021), 2879–2892.

[41] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping
Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing sequential graph computations.
ACM Transactions on Database Systems (TODS) 43, 4 (2018), 1–39.

[42] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the SIGMOD 2018. 1433–1445.

[43] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed deep graph
learning at scale. In 15th {USENIX} OSDI 21. 551–568.

[44] Shufeng Gong, Chao Tian, Qiang Yin, Wenyuan Yu, Yanfeng Zhang, Liang Geng,
Song Yu, Ge Yu, and Jingren Zhou. 2021. Automating Incremental Graph Process-
ing with Flexible Memoization. Proc. VLDB Endow. 14, 9 (may 2021), 1613–1625.

[45] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs..
In OSDI, Vol. 12. 2.

[46] Zhiwei Guo and Heng Wang. 2020. A deep graph neural network-based mecha-
nism for social recommendations. IEEE Transactions on Industrial Informatics 17,
4 (2020), 2776–2783.

[47] Petter Holme. 2017. Three faces of node importance in network epidemiology:
Exact results for small graphs. Physical Review E 96, 6 (2017), 062305.

[48] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. 2020. Peregrine: a pattern-
aware graph mining system. In Proceedings of the Fifteenth European Conference
on Computer Systems. 1–16.

[49] Longbin Lai, Yufan Yang, Zhibin Wang, Yuxuan Liu, Haotian Ma, Sijie Shen,
Bingqing Lyu, Xiaoli Zhou, Wenyuan Yu, Zhengping Qian, Chen Tian, Sheng
Zhong, Yeh-Ching Chung, and Jingren Zhou. 2023. GLogS: Interactive Graph Pat-
tern Matching Query At Large Scale. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 53–69.

[50] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[51] Michelle M Li, Kexin Huang, and Marinka Zitnik. 2022. Graph representation
learning in biomedicine and healthcare. Nature Biomedical Engineering 6, 12
(2022), 1353–1369.

[52] Su Li et al. 2023. Hiactor: an open-source hierarchical actor framework. https:
//github.com/alibaba/hiactor.

[53] Xue Li, Ke Meng, Lu Qin, Longbin Lai, Wenyuan Yu, Zhengping Qian, Xuemin
Lin, and Jingren Zhou. 2023. FLASH: A Framework for Programming Distributed
Graph Processing Algorithms. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). IEEE, 232–244.

[54] Tianfeng Liu, Yangrui Chen, Dan Li, ChuanWu, Yibo Zhu, Jun He, Yanghua Peng,
Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo. 2023. {BGL}:{GPU-
Efficient}{GNN} Training by Optimizing Graph Data {I/O} and Preprocessing.
In 20th USENIX Symposium on NSDI 23. 103–118.

[55] Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu. 2022. Feder-
ated social recommendation with graph neural network. ACM Transactions on
Intelligent Systems and Technology (TIST) 13, 4 (2022), 1–24.

[56] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[57] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 1–39.

[58] Ke Meng, Liang Geng, Xue Li, Qian Tao, Wenyuan Yu, and Jingren Zhou. 2023.
Efficient Multi-GPU Graph Processing with Remote Work Stealing. In 2023 IEEE
39th International Conference on Data Engineering (ICDE). 191–204.

[59] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A Pattern Based
Algorithmic Autotuner for Graph Processing on GPUs. In Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming (Washington,
District of Columbia) (PPoPP ’19). ACM, New York, NY, USA, 201–213.

[60] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The
pagerank citation ranking: Bring order to the web. Technical Report. Technical
report, stanford University.

[61] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[62] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes McK-
inney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The composable
data management system manifesto. Proceedings of the VLDB Endowment 16, 10
(2023), 2679–2685.

[63] Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang
Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou. 2021. GAIA:
A System for Interactive Analysis on Distributed Graphs Using a High-Level

398

https://giraph.apache.org
https://www.w3.org/TR/sparql11-query/
https://networkx.org/
https://www.w3.org/RDF/
https://tinkerpop.apache.org
https://neo4j.com/product/cypher-graph-query-language/
https://neo4j.com/product/cypher-graph-query-language/
https://janusgraph.org/
https://https://www.gqlstandards.org
https://spark.apache.org/graphx/
https://ldbcouncil.org/benchmarks/snb/
https://ldbcouncil.org/benchmarks/snb/
https://www.tigergraph.com/
https://github.com/alibaba/libgrape-lite/blob/master/Performance.md
https://github.com/alibaba/libgrape-lite/blob/master/Performance.md
https://orc.apache.org
https://parquet.apache.org/
https://ldbcouncil.org/benchmarks/snb-interactive/
https://ldbcouncil.org/benchmarks/snb-interactive/
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://github.com/alibaba/GraphAr
https://www.gqlstandards.org/
https://ldbcouncil.org/benchmarks/graphalytics/
https://neo4j.com/
https://www.ontotext.com/
https://github.com/pytorch/pytorch
https://github.com/pyg-team/pytorch_geometric
https://github.com/alibaba/GraphScope/tree/main/flex/resources/queries/examples/store_procedure
https://github.com/alibaba/GraphScope/tree/main/flex/resources/queries/examples/store_procedure
https://github.com/tensorflow/tensorflow
https://ogb.stanford.edu/
https://tugraph.antgroup.com/
https://tugraph.antgroup.com/
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
http://snap.stanford.edu/data
https://github.com/alibaba/hiactor
https://github.com/alibaba/hiactor

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Tao He et al.

Language. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, 321–335.

[64] Marko A Rodriguez. 2015. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. 1–10.

[65] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488.

[66] Sijie Shen, Zihang Yao, Lin Shi, Lei Wang, Longbin Lai, Qian Tao, Li Su, Rong
Chen, Wenyuan Yu, Haibo Chen, Binyu Zang, and Jingren Zhou. 2023. Bridging
the Gap between Relational OLTP and Graph-based OLAP. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23). USENIX Association, 181–196.

[67] Li Su, Xiaoming Qin, Zichao Zhang, Rui Yang, Le Xu, Indranil Gupta, Wenyuan
Yu, Kai Zeng, and Jingren Zhou. 2022. Banyan: A Scoped Dataflow Engine for
Graph Query Service. Proc. VLDB Endow. 15, 10 (2022), 2045–2057.

[68] Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang, Lei Wang, Jie Zhang,
Yong Li, Wenyuan Yu, Jingren Zhou, and Fei Wu. 2023. Legion: Automatically
Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training. In
2023 USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 165–179.

[69] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC Social Network
Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (2022),
877–890.

[70] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. 2013. From" think like a vertex" to" think like a graph".
Proceedings of the VLDB Endowment 7, 3 (2013), 193–204.

[71] Vasileios Trigonakis, Jean-Pierre Lozi, Tomáš Faltín, Nicholas P Roth, Iraklis
Psaroudakis, Arnaud Delamare, Vlad Haprian, Călin Iorgulescu, Petr Koupy,
Jinsoo Lee, et al. 2021. {aDFS}: An Almost {Depth-First-Search} Distributed
{Graph-Querying} System. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). 209–224.

[72] Ke Tu, Wei Qu, Zhengwei Wu, Zhiqiang Zhang, Zhongyi Liu, Yiming Zhao, Le
Wu, Jun Zhou, and Guannan Zhang. 2023. Disentangled Interest importance
aware Knowledge Graph Neural Network for Fund Recommendation. In Pro-
ceedings of the 32nd ACM International Conference on Information and Knowledge
Management. 2482–2491.

[73] Suketu Vakharia, Peng Li, Weiran Liu, and Sundaram Narayanan. 2023. Shared
foundations: Modernizing meta’s data lakehouse. In The Conference on Innovative
Data Systems Research, CIDR.

[74] Keval Vora. 2019. {LUMOS}:{Dependency-Driven} Disk-based Graph Process-
ing. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 429–442.

[75] XiyuanWang, Haotong Yang, andMuhan Zhang. 2023. Neural CommonNeighbor
with Completion for Link Prediction. arXiv:2302.00890 [cs.LG]

[76] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T Riffel, et al.
2017. Gunrock: GPU graph analytics. ACM Transactions on Parallel Computing
(TOPC) 4, 1 (2017), 3.

[77] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: a factored system for sample-
based GNN training over GPUs. In Proceedings of the Seventeenth European Con-
ference on Computer Systems. 417–434.

[78] Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, and Philip S Yu. 2021. Con-
sisrec: Enhancing gnn for social recommendation via consistent neighbor aggre-
gation. In Proceedings of the 44th international ACM SIGIR conference on Research
and development in information retrieval. 2141–2145.

[79] Hai-Cheng Yi, Zhu-Hong You, De-Shuang Huang, and Chee Keong Kwoh. 2022.
Graph representation learning in bioinformatics: trends, methods and applica-
tions. Briefings in Bioinformatics 23, 1 (2022), bbab340.

[80] Wenyuan Yu, Tao He, Lei Wang, Ke Meng, Ye Cao, Diwen Zhu, Sanhong Li,
and Jingren Zhou. 2023. Vineyard: Optimizing Data Sharing in Data-Intensive
Analytics. Proc. ACM Manag. Data 1, 2 (2023).

[81] Mohamad Zamini, Hassan Reza, and Minou Rabiei. 2022. A review of knowledge
graph completion. Information 13, 8 (2022), 396.

[82] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural
Networks. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red
Hook, NY, USA, 5171–5181.

[83] P Zhang and G Chartrand. 2006. Introduction to graph theory. Tata McGraw-Hill.
[84] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. 2021. Graph neural

networks and their current applications in bioinformatics. Frontiers in genetics
12 (2021), 690049.

[85] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

[86] Zhilun Zhou, Yu Liu, Jingtao Ding, Depeng Jin, and Yong Li. 2023. Hierarchi-
cal Knowledge Graph Learning Enabled Socioeconomic Indicator Prediction in
Location-Based Social Network (WWW ’23). Association for Computing Machin-
ery, New York, NY, USA, 122–132.

[87] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System.. In OSDI. 301–316.

[88] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2019. LiveGraph: A Transactional
Graph Storage System with Purely Sequential Adjacency List Scans. Proceedings
of the VLDB Endowment 13, 7 (2019).

399

https://arxiv.org/abs/2302.00890

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Graph Models & Organizations
	2.2 Applications of Graph Computing
	2.3 Programming Interfaces
	2.4 Performance Requirements
	2.5 Existing Graph Computing Systems
	2.6 Opportunity: LEGO-like Modularity

	3 System Overview
	4 Storage Layer
	4.1 GRIN, Unified Graph Retrieval Interface
	4.2 Storage Backends

	5 Graph Querying
	5.1 The IR Abstraction
	5.2 IR-based Optimizer
	5.3 Code Generation

	6 Graph Analytics
	7 Graph Learning
	8 Use Cases
	9 Evaluations
	9.1 Supported Scenarios
	9.2 Synthetic Workloads
	9.3 Real-World Applications

	10 Conclusion and Future work
	References

