
GraphScope Flex: A Graph Computing Stack with LEGO-Like Modularity

GraphScope Team
graphscope@alibaba-inc.com

Extended Abstract
Real-world graph applications can exhibit signi�cant varia-
tion inmany aspects. Diverse graphworkloads, such as graph
analytics, graph traversal queries, graph pattern matching,
and graph neural networks, may be involved, each of which
can be tackled using di�erent programming interfaces, such
as Pregel[5], PIE[1], and FLASH[7] for graph analytics, or
Cypher and Gremlin for graph queries. Furthermore, these
applications may have di�erent deployment modes, includ-
ing an o�ine analytical pipeline that prioritizes low running
time of a complex query, an online service that demands
high query throughput, or a learning task that can leverage
heterogeneous hardware resources, such as CPUs and GPUs.
Moreover, the graph data can be stored in various formats,
considering factors such as persistency, mutability, parti-
tioning, and transactional guarantees. To further complicate
the situation, these aspects can interact with each other in
complex ways. For example, a fraud-detection scenario at
Alibaba [2] may require a combination of graph analytics,
traversal queries, and neural networks, working on an im-
mutable distributed in-memory graph in an o�ine pipeline.
On the other hand, an online interactive graph query sys-
tem may require support for traversal queries and pattern
matching on a mutable, persistent graph.

To address such diversities and complexities, we have de-
veloped GraphScope Flex, a graph computing stack with
LEGO-like modularity, as shown in Figure 1. This stack com-
prises multiple components, which users can combine like
LEGO bricks to create customized deployments that meet
their speci�c graph computing needs. For example, in Fig-
ure 1, users can deploy systems for online graph business
intelligence, o�ine analytical graph computation, and train-
ing GNN models, using orange, yellow, and green bricks, re-
spectively. Furthermore, the blue frame in Figure 1 encloses
the deployment of GraphScope Flex for solving a complex
graph pipeline, such as the aforementioned fraud detection.

GraphScope Flex deployments are �exible yet highly per-
formant. For instance, it has outperformed the other systems
from 2⇥ to magnitudes in both LDBC [3] SNB and Grapha-
lytics benchmarks1. We highlight the techniques that enable
this �exibility and e�ciency below.
• The uni�ed storage interface provides a layer of highly
e�cient graph access interface, which decouples di�erent
graph formats and media from computing engines. It han-
dles the read-paths uniformly to a variety of graph data
stores, with support for a number of indices and other
“push-downs” to leverage the optimizations provided by

1h�ps://github.com/alibaba/GraphScope/blob/Flex/Performance.md

Cypher Gremlin Interfaces GNN Models

GRAPE [1]

Hiactor [4] Gaia [6]

Hiactor Codegen Gaia Codegen

Builtin Apps

Tensorflow

Graph Query Optimizer

Graph-Learn [8]
Graph IR

Python/Java/… SDKRESTful/WebSocket/… API

PyTorch

Unified Storage Interface

Pregel [5]
/ PIE [2] FLASH [7]

For online graph BI For offline graph analytics For one-stop graph computingFor GNN

Archived GraphIn-memory Property GraphMutable Property Graph …

Figure 1. A LEGO view of GraphScope.
the graph stores. Additionally, new types of graph stores
can be easily integrated into GraphScope Flex.

• A Graph IR (intermediate representation) layer provides a
language-agnostic representation that can be translated
from graph queries written in Cypher and Gremlin. It ex-
tends relational algebra to include a set of graph-speci�c
primitives such as getting neighbors and paths. Under the
IR layer, a universal optimizer is developed. After opti-
mization, the IR can guide code generation for either the
Hiactor [4] for online high-QPS service, or Gaia [6] for
data-parallel execution.

• An analytical runtime based on GRAPE [1], which uses a
fragment-centric and extensible architecture to support
multiple programming models e�ciently.

• A GNN framework based on graph-learn [8] that can ef-
�ciently support distributed GNN training on industrial-
scale graphs. It supports both Tensor�ow and PyTorch as
the training backend, and decouples sampling and training
such that each part can be scaled independently.

References
[1] F��, W., �� ��. Parallelizing sequential graph computations. In SIGMOD

2017.
[2] F��, W., �� ��. Graphscope: A uni�ed engine for big graph processing.

Proc. VLDB Endow. 14, 12 (2021).
[3] Linked data benchmark council. h�p://ldbcouncil.org/.
[4] L�, S., �� ��. Hiactor: an open-source hierarchical actor framework.

h�ps://github.com/alibaba/hiactor, 2023.
[5] M�������, G., �� ��. Pregel: a system for large-scale graph processing.

In SIGMOD 2010.
[6] Q���, Z., �� ��. Gaia: A system for interactive analysis on distributed

graphs using a high-level language. In NSDI 2021.
[7] X��, L., �� ��. Flash: A framework for programming distributed graph

processing algorithms. In ICDE 2023, to appear.
[8] Z��, R., �� ��. Aligraph: A comprehensive graph neural network

platform. Proc. VLDB Endow. 12, 12 (2019).

https://github.com/alibaba/GraphScope/blob/Flex/Performance.md
http://ldbcouncil.org/
https://github.com/alibaba/hiactor

