Adaptive Asynchronous Parallelization of Graph Algorithms

Wenfei Fan43, Ping Lu?, Xiaojian Luo?, Jingbo Xu??,
Qiang Yin%,Wenyuan Yu®?, Ruiqi Xu?!

'"University of Edinburgh “BDBC, Beihang University 37 Bridges Ltd.

INTRODUCTION A

We proposes an Adaptive Asynchronous Parallel (AAP) model for
graph computations. As opposed to Bulk Synchronous Parallel
(BSP) and Asynchronous Parallel (AP) models, AAP reduces both
stragglers and stale computations by dynamically adjusting
relative progress of workers.

- BSP, AP and Stale Synchronous Parallel model (SSP) are
special cases of AAP.

- Better yet, AAP optimizes parallel processing by adaptively
switching among these models at different stages.

- Employing the programming model of GRAPE, AAP

parallelizes existing sequential algorithms based on fixpoint
computation with partial and incremental evaluation.

- Under a monotone condition, AAP guarantees to converge at
correct answers.

- It can optimally stmulate MapReduce/PRAM/BSP/AP/SSP.

MOTIVATION

* BSP: stragglers keep other workers 1dle, thus wasting resources.
* AP: with redundant computation and communication
* SSP: ad-hoc staleness, incremental improvement over BSP/AP

* Is it possible to have a sismple parallel model that inherits the
benefits of BSP and AP, and reduces both stragglers and stale
computations, without explicitly switching between the two?

PROGRAMMING MODEL

Data partitioned parallelism (shared-nothing architecture).
.., G,), distributed to workers.
GRAPE API: three core functions for a graph query class Q

Fragmented graph G = (G, .

PEval: a (existing) sequential algorithm for Q, for partial evaluation;

IncEval: a (existing) sequential incremental algorithm for Q);

Assemble: a sequential algorithm (taking a union of partial results).

query Q

A fixpoint computation /[ masttr o ]\
(I) (R19 ©coy Rll) [ worker ] oo [ worker ] PEval
L. s I AN OF) o QFwW

IncEval
Ri0= PEval(Q, G)) [ wofkeer 4_,( o ] >

Rir+1 = Inckval(Q, R, G;,, M;) Q-@-EB-W--\q--------------- _ O(Fu@My)
[ master Pg Assemble

 Convergence guarantee: 06

- T1: Update parameters take values from a finite domain

- T2: IncEval 1s contracting (the same run)

- T3: IncEval 1s monotonic (different runs)
T1 + T2: termination

T1 + T2 + T3: the Church-Rosser property (all asynchronous runs
converge at the same correct result)

£

/Bridges

é O

* Simulation Theorem: MapReduce, BSP, AP, SSP and PRAM
models are optimally simulated by AAP

DYNAMIC ADJUSTMENT

+ 00 _'S(ri,rminarmax) \% (’7i — O)

DSi — T]fl o ’T|Zd|e S(riarmina rmax) /\ (1 S ’7i < Ll)
0 S(ria 'min> rmax) A (’71’ > I—i)

S (7, Tmin Tmax) - Whether P; should be suspended immediately.

L; “predicts” how many messages should be accumulated,

T ]fi estimates how longer P; should wait to accumulate L; messages.

iidle 1s the 1dle time of worker P; after the last round.

IMPLEMENTATION
end user devel|oper :
- , Plug-in
quenesi% results lsequentlal algs.
|
|:>|ay<L Query Parser ‘ Auto. Parallel Interface GRAPE AP
GRAPE Query Engine - Message
Parti  Partition
artial Incremental Assemble
Evaluation Evaluation SS€ . I(;]dexh N
Adaptive Async Mngr. | Statistics Collector raph Alg.
MPI1 Control Load Balancer
Fault-tolerance
Index Mngr. Partition Mngr. Module
A 1 ST

v \
Storage System (DFS)

PERFORMANCE
Algorithms and their applications: (1) SSSP (traffic analysis); (2)

Connected Component (social analysis); (3) PageRank; (4)
Collaborate Filtering (recommendation, machine learning).

Outperform BSP, AP and SSP by 4.3X, 14.7X and 4.7X on average
Outperform the state-of-the-art systems

1000 [ T | l " 600

I | | |
»
©
[
o
3
@ 300 |
Q
=
|_
150 .
10 | B
| | | l | | | | |

O |
64 96 128 160 192 64 96 128 160 192

(b) Varying n: SSSP (Friendster) (f) Varying n: PageRank (UKWeb)

é _ i )
Speedup by AAP in large-scale setting

up to 5.0, 16.8 and 5.9 times with 320 workers

100

Time (
ﬁ S

&

5 00 T T [ | [ 600 T

v

400 |- 500 -

» 400 |

300
300 -

£
= 200
100 |- N
=0

N
! - — =1
192 224 256 288 320

(1) Speedup by AAP

200

100

0

0

(k) Impact of partitioning

CONCLUSION

We have proposed AAP to remedy the limitations of BSP and
AP by reducing both stragglers and redundant stale computations.

More information about GRAPE: https://7bridges.10




