
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

We proposes an Adaptive Asynchronous Parallel (AAP) model for
graph computations. As opposed to Bulk Synchronous Parallel
(BSP) and Asynchronous Parallel (AP) models, AAP reduces both
stragglers and stale computations by dynamically adjusting
relative progress of workers.
- BSP, AP and Stale Synchronous Parallel model (SSP) are

special cases of AAP.
- Better yet, AAP optimizes parallel processing by adaptively

switching among these models at different stages.
- Employing the programming model of GRAPE, AAP

parallelizes existing sequential algorithms based on fixpoint
computation with partial and incremental evaluation.

- Under a monotone condition, AAP guarantees to converge at
correct answers.

- It can optimally simulate MapReduce/PRAM/BSP/AP/SSP.

INTRODUCTION

CONCLUSION

We have proposed AAP to remedy the limitations of BSP and
AP by reducing both stragglers and redundant stale computations.
More information about GRAPE: https://7bridges.io

1University of Edinburgh 2BDBC, Beihang University 37 Bridges Ltd.

Wenfei Fan(,*,+, Ping Lu*, Xiaojian Luo+, Jingbo Xu*,+,
Qiang Yin*,Wenyuan Yu*,+, Ruiqi Xu(

Adaptive Asynchronous Parallelization of Graph Algorithms

Data partitioned parallelism (shared-nothing architecture).
Fragmented graph G = (G1, …, Gn), distributed to workers.
GRAPE API: three core functions for a graph query class Q
PEval: a (existing) sequential algorithm for Q, for partial evaluation;
IncEval: a (existing) sequential incremental algorithm for Q;
Assemble: a sequential algorithm (taking a union of partial results).

PERFORMANCE

IMPLEMENTATION

Algorithms and their applications: (1) SSSP (traffic analysis); (2)
Connected Component (social analysis); (3) PageRank; (4)
Collaborate Filtering (recommendation, machine learning).

MOTIVATION

• BSP: stragglers keep other workers idle, thus wasting resources.
• AP: with redundant computation and communication
• SSP: ad-hoc staleness, incremental improvement over BSP/AP
• Is it possible to have a simple parallel model that inherits the

benefits of BSP and AP, and reduces both stragglers and stale
computations, without explicitly switching between the two? Outperform BSP, AP and SSP by 4.3X, 14.7X and 4.7X on average

Outperform the state-of-the-art systems

PROGRAMMING MODEL

Storage System (DFS)

Fault-tolerance
Module

GRAPE Query Engine

GRAPE API
• Message
• Partition
• Index
• Graph Alg.

Query Parser Auto. Parallel Interface

Index Mngr.

Adaptive Async Mngr.

Partition Mngr.

Partial
Evaluation

Incremental
Evaluation Assemble

developerend user
queries results sequential algs.

Play

Plug-in

MPI Control Load Balancer

Statistics Collector

7Bridges

master P0

ŏ
Q(F1) Q(Fm)

PEval

ŏ
Q(F1 ⊕M1) Q(Fm⊕Mm)

worker worker

workerworker

master P0

IncEval

Assemble

query Q

Q(G)

(a)

(b)

(d)

(c)

0 5 10 15 20 25

(d) AAP

P1

(a) BSP
(b) AP
(c) SSP

P2

P3

0

1

3

5

2

4

6

7

F1 F2

F3

(e)

Ri
0 = PEval(Q, Gi)

Ri
r+1 = IncEval(Q, Ri

r, Gi, Mi)

A fixpoint computation
F (R1, …, Rn)

• Convergence guarantee:
- T1: Update parameters take values from a finite domain
- T2: IncEval is contracting (the same run)
- T3: IncEval is monotonic (different runs)
T1 + T2: termination
T1 + T2 + T3: the Church-Rosser property (all asynchronous runs
converge at the same correct result)

• Simulation Theorem: MapReduce, BSP, AP, SSP and PRAM
models are optimally simulated by AAP

DYNAMIC ADJUSTMENT

:(<=, <>?@, <>AB) : whether D= should be suspended immediately.
L= “predicts” how many messages should be accumulated,

EFG
= estimates how longer D= should wait to accumulate L= messages.

E?HIJ= is the idle time of worker D= after the last round.

Speedup by AAP in large-scale setting
up to 5.0, 16.8 and 5.9 times with 320 workers

