

Functional Dependencies for Graphs Wenfei Fan^{1,2} Yinghui Wu³ Jingbo Xu^{1,2}

¹University of Edinburgh ²Beihang University ³Washington State University

INTRODUCTION

- We propose a class of functional dependencies for graphs, referred to as GFDs. GFDs capture both attribute-value dependencies and topological structures of entities, and subsume conditional functional dependencies (CFDs) as a special case.
- We settle satisfiability and implication problem for GFDs.

PARALLEL QUANTIFIED MATCHING

An algorithm is parallel scalable if

$$T(|A|, |G|, n) = O\left(\frac{t(|A|, |G|)}{n}\right) + (n|A|)^{O(1)}$$

- T(|A|, |G|, n) : worst case running time for solving problem A over graph G using n processors
- t(|A|, |G|): worst case running time of sequential algorithm
- As one of applications of GFDs, we study the validation problem, to detect errors in graphs by using GFDs as data quality rules.
- We experimentally verify the effectiveness and efficiency of our GFD techniques.

GFDS: SYNTAX AND SEMANTICS

GFDs. A GFD ϕ is a pair (Q[\bar{x}], X \rightarrow Y), where \circ Q[\bar{x}] is a graph pattern, called the pattern of ϕ ; and \circ X and Y are two (possibly empty) sets of literals of \bar{x} .

GFD \$\opeq1\$ = (Q1[x, y, z], \$\overline{O}\$ → y.val = z.val). It is to ensure that for all country entities x, if x has two capital entities y and z, then y and z share the same name.

- (1) Parallel scalable algorithm repVal for replicated graph: *Graph G is replicated at each processors*
- Workload balancing: Workload estimation and partition
- Local error detection: Upon receiving the assigned $W_i(\Sigma)$, procedure **localVio** computes the local violation set $Vio_i(\Sigma, G)$ at each processor S_i in parallel.

(2) Parallel scalable algorithm disVal for distributed graph:

- Graph G may have already been fragmented and distributed across processors.
- Bi-criteria balancing: Workload estimation and partition.
- Local error detection: (a) pre-fetch, (b) partial detection.

EXPERIMENTAL STUDY

- **DBPedia**: knowledge graph with 28 million entities of 200 types and 33.4 million edges of 160 types.
- Pokec: 1.63M nodes of 269 types, and 30.6M edges of 11 types.
- GFD $\phi 2 = (Q2[x, y, z], \emptyset \rightarrow x.text = y.desc)$. It states that if entities x, y and z satisfy the topological constraint of Q2, then the annotation of status x of blog z must match the description of photo y included in z.
- GFD \$\overline{93}\$ = (Q3[x, x', y₁, ..., y_k, z₁, z₂], X₃ → Y₃), where X₃ includes x'.is_fake = true, z₁.keyword = c, z₂.keyword = c, and Y₃ is x.is_fake = true; here c is a constant indicating a peculiar keyword. It states that for accounts x and x', if the conditions in X₃ are satisfied, including that x' is confirmed fake, then x is also a fake account.

Special cases:

- Relational FDs and CFDs are special cases of GFDs.
- **constant GFDs** subsume constant CFDs, and **variable GFDs** are analogous to traditional FDs
- GFDs can specify certain type information.

• Yago2: 3.5M entities of 13 types and 7.35M links of 36 types.

REASONING ABOUT GFDS

Satisfiability Problem: A set Σ of GFDs is satisfiable if Σ has a model; that is, a graph G such that (a) G $\models \Sigma$, and (b) for each GFD $(Q[x], X \rightarrow Y)$ in Σ , there exists a match of Q in G. **Theorem:** The satisfiability problem is **coNP-complete** for GFDs. **Implication Problem:** A set Σ of GFDs implies another GFD ϕ ,

denoted by $\Sigma \models \phi$, if for all graphs G such that $G \models \Sigma$, we have that $G \models \phi$, i.e., ϕ is a logical consequence of Σ .

Theorem: The implication problem for GFDs is **NP-complete**.

CONCLUSION

We have proposed GFDs, established complexity bounds for their classical problems, and provided parallel scalable algorithms for their application. Our experimental results have verified the effectiveness of GFD techniques.