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INTRODUCTION

* We propose a class of functional dependencies for graphs,
referred to as GFDs. GFDs capture both attribute-value
dependencies and topological structures of entities, and
subsume conditional functional dependencies (CFDs) as a
special case.

* We settle satisfiability and implication problem for GFDs.

* As one of applications of GFDs, we study the validation
problem, to detect errors 1in graphs by using GFDs as data
quality rules.

* We experimentally verify the effectiveness and efficiency of

-

our GFD techniques.

GFDS: SYNTAX AND SEMANTICS

GFDs. A GFD ¢ 1s a pair (Q[Xx], X — Y ), where
o Q[x] 1s a graph pattern, called the pattern of ¢; and
o X and Y are two (possibly empty) sets of literals of x.
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 GFD ¢l =(Ql[x, Yy, z], ® — y.val = z.val). It 1s to ensure that
for all country entities x, 1f x has two capital entities y and z,
then y and z share the same name.

 GFD ¢2 = (Q2[x,y, z], ® — x.text = y.desc). It states that 1f
entities x, y and z satisty the topological constraint of Q2, then
the annotation of status x of blog z must match the description
of photo y included 1n z.

* GFD 03 =(Q3[X, X", Y55 Yi» Z15 Zo], X35 = Y3), Where X,
includes x'".1s fake = true, z,.keyword = ¢, z,.keyword = ¢, and
Y, 1s x.1s_fake = true; here ¢ 1s a constant indicating a peculiar
keyword. It states that for accounts x and x’, i1f the conditions 1n
X, are satisfied, including that x" 1s confirmed fake, then x 1s
also a fake account.

Special cases:
* Relational FDs and CFDs are special cases of GFDs.

 constant GFDs subsume constant CFDs, and variable GFDs
are analogous to traditional FDs

* GFDs can specify certain type information.

REASONING ABOUT GFDS

Satisfiability Problem: A set of GFDs is satisfiable 1f X has a
model; that 1s, a graph G such that (a) G |= X, and (b) for each GFD
(Q[ x], X —> Y ) in X, there exists a match of Q in G.

Theorem: The satisfiability problem 1s coNP-complete for GFDs.

Implication Problem: A setX of GFDs implies another GFD ¢,
denoted by X |= o, if for all graphs G such that G |= X2, we have that
G |= ¢, 1.€., ¢ 1s a logical consequence of .

Theorem: The implication problem for GFDs 1s NP-complete.

PARALLEL QUANTIFIED MATCHING

An algorithm 1s parallel scalable 1f

raiclm = o (D) 4 upapee

* T(]A|,|G|,n) :worst case running time for solving problem A
over graph G using n processors

* t(|A|,|G]|): worst case running time of sequential algorithm

(1) Parallel scalable algorithm repVal for replicated graph:

* Graph G is replicated at each processors

* Workload balancing: Workload estimation and partition

* Local error detection: Upon receiving the assigned W.(X),
procedure localVio computes the local violation set Vio.,(2, G)

at each processor S; 1n parallel.
(2) Parallel scalable algorithm disVal for distributed graph:

* Graph G may have already been fragmented and distributed
ACross processors.

* Bi-criteria balancing: Workload estimation and partition.

* Local error detection: (a) pre-fetch, (b) partial detection.

EXPERIMENTAL STUDY

* DBPedia: knowledge graph with 28 million entities of 200 types
and 33.4 million edges of 160 types.

* Pokec: 1.63M nodes of 269 types, and 30.6M edges of 11 types.
* Yago2: 3.5M entities of 13 types and 7.35M links of 36 types.

[ On average 3.7 (2.4) time faster repVal (disVal) ]
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[ Varying average GFD size ]
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We have proposed GFDs, established complexity bounds for their
classical problems, and provided parallel scalable algorithms for
their application. Our experimental results have verified the
effectiveness of GFD techniques.




