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g INTRODUCTION A

GRAPE, parallelizing existing sequential algorithms as a whole,
and guaranteeing convergence and correctness when the sequential
algorithms provided are correct.

* Sequential graph algorithms can be “plugged into” GRAPE
with minor additions, and get parallelized.

* Foundation: a simultaneous fixed point computation with
partial evaluation and incremental evaluation.
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ALGORITHM PANEL
Partial Evaluation (PEval)

-

1- MessageBlock PEval(Graph &graph, Query &query){
2 //TODO: Enter message preamble here
=
4 //TODO: Paste your sequential algorithm here
5

Incremental Evaluation (IncEval)

1 MessageBlock IncEval(Graph &graph, Query &query,
2 MessageBlock msg){

3 //TODO: Pz |
4 } GRAPE Online Plug Play Results Analytics Documentation
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Choose an algorithm from the library or plugins, and configure the environment.

MOTIVATION

[t 1s nontrivial for one to learn how to program in the new parallel
models, e.g., “think like a vertex”.

* (Graph computations have been studied for decades, and a number
of sequential graph algorithms are already 1n place. Can we use
them without recasting?

* Do existing parallel graph engines guarantee termination and
correctness”?

GRAPE API
Data partitioned parallelism (shared-nothing architecture).

Fragmented graph G = (G, ..., G,), distributed to workers.
GRAPE API: three core functions for a graph query class Q
PEval: a (existing) sequential algorithm for Q, for partial evaluation;

IncEval: a (existing) sequential incremental algorithm for Q;

Assemble: a sequential algorithm (taking a union of partial results).

FOUNDATION OF GRAPE

A fixpoint computation query Q

O (Ry, ..., Ry)
Rio — PEV&I(Q, Gl)

+1 —
R.™ = IncEval(Q, R\, G;, M.)
* R/ : partial results at processor
iinroundr

* M. : message to processor i

\. J/

Assurance Theorem: termination and correctness guaranteed if the
sequential algorithms provided are correct, and M. 1s “monotonic”!

coordinator

Assemble

answer Q(G)

Simulation Theorem: MapReduce, BSP (bulk synchronous
parallel) and PRAM models are optimally simulated by GRAPE

IMPLEMENTATION AND FEATURES
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* Ease of programming. Only need to provide three (existing)
sequential (incremental) algorithms for Q with minor additions.

* Semi-automated parallelization. Guarantee to converge at
correct answers under a monotonic condition, if the three
sequential algorithms provided are correct.

* Graph-level optimization. GRAPE inherits all optimization
strategies available for sequential algorithms and graphs.

* Scale-up. GRAPE achieves comparable performance to the
state-of- the-art graph systems.

PERFORMANCE

Sequential Algorithms and their applications: (1) SSSP (traffic
analysis); (2) Connected Component (social analysis); (3) Graph
Simulation (social recommendation); (4) Keyword Search/
Subgraph Isomorphism(Web/knowledge mining); (5)
Collaborate Filtering (recommendation, machine learning).
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APPLICATION SCENARIO
Social media marketing with Graph Pattern Association Rules.
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CONCLUSION

GRAPE: make parallel graph computations accessible to users who
know conventional graph algorithms from undergraduate textbooks.

Welcome to play with GRAPE (alpha): http://grapedb.i0




