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ABSTRACT
This paper proposes quantified graph patterns (QGPs), an
extension of graph patterns by supporting simple counting
quantifiers on edges. We show that QGPs naturally express
universal and existential quantification, numeric and ratio
aggregates, as well as negation. Better still, the increased
expressivity does not come with a much higher price. We
show that quantified matching, i.e., graph pattern matching
with QGPs, remains NP-complete in the absence of negation,
and is DP-complete for general QGPs. We show how quanti-
fied matching can be conducted by incorporating quantifier
checking into conventional subgraph isomorphism methods.
We also develop parallel scalable algorithms for quantified
matching. As an application of QGPs, we introduce quan-
tified graph association rules defined with QGPs, to iden-
tify potential customers in social media marketing. Using
real-life and synthetic graphs, we experimentally verify the
effectiveness of QGPs and the scalability of our algorithms.

CCS Concepts
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1. INTRODUCTION
Given a graph pattern 𝑄(𝑥𝑜) and a graph 𝐺, graph pat-

tern matching is to find 𝑄(𝑥𝑜, 𝐺), the set of matches of 𝑥𝑜
in subgraphs of 𝐺 that are isomorphic to 𝑄. Here “query fo-
cus” 𝑥𝑜 is a designated node of 𝑄 denoting search intent [9].
Traditionally, pattern 𝑄 is modeled as a (small) graph in the
same form as 𝐺. This notion of patterns is used in social
group detection and transportation network analysis.
However, in applications such as social media market-

ing, knowledge discovery and cyber security, more expressive
patterns are needed, notably ones with counting quantifiers.

Example 1: (1) Consider an association rule for specifying
regularities between entities in social graphs:
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∘ If (a) person 𝑥𝑜 is in a music club, and (b) among the
people whom 𝑥𝑜 follows, at least 80% of them like an
album 𝑦, then the chances are that 𝑥𝑜 will buy 𝑦.

Its antecedent specifies conditions (a) and (b). If these two
conditions hold, then we can recommend album 𝑦 to 𝑥𝑜.
This is an example of social media marketing, which is pre-
dicted to trump traditional marketing. Indeed, empirical
studies suggest that “90% of customers trust peer recom-
mendations versus 14% who trust advertising” [1], and “the
peer influence from one’s friends causes more than 50% in-
creases in odds of buying products” [8].

The antecedent is specified as a quantified graph pattern
(QGP) 𝑄1(𝑥𝑜) shown in Fig. 1, where 𝑥𝑜 is its query focus,
indicating potential customers. Here edge follow(𝑥𝑜, 𝑧) car-
ries a counting quantifier “≥ 80%”, for condition (b) above.
In a social graph 𝐺, a node 𝑣𝑥 matches 𝑥𝑜 in 𝑄1, i.e.,
𝑣𝑥 ∈ 𝑄1(𝑥𝑜, 𝐺), if (a) there exists an isomorphism ℎ from
𝑄1 to a subgraph 𝐺′ of 𝐺 such that ℎ(𝑥𝑜) = 𝑣𝑥, i.e., 𝐺′

satisfies the topological constraints of 𝑄1, and (b) among
all the people whom 𝑣𝑥 follows, 80% of them account for
matches of 𝑧 in 𝑄1(𝐺), satisfying the counting quantifier.

The following association rules are also found useful in
social media marketing, with various counting quantifiers:

∘ If for all the people 𝑧 whom 𝑥𝑜 follows, 𝑧 recommends
Redmi 2A (cell phone), then 𝑥𝑜 may buy a Redmi 2A.

∘ If among the people followed by 𝑥𝑜, (a) at least 𝑝
of them recommend Redmi 2A, and (b) no one gives
Redmi 2A a bad rating, then 𝑥𝑜 may buy Redmi 2A.

The antecedents of these rules are depicted in Fig. 1 as QGPs
𝑄2(𝑥𝑜) and 𝑄3(𝑥𝑜), respectively. Here 𝑄2 uses a universal
quantification (= 100%), while 𝑄3 carries numeric aggre-
gate (≥ 𝑝) and negation (= 0). In particular, a node 𝑣𝑥 in 𝐺
matches 𝑥𝑜 in 𝑄3 only if there exists no node 𝑣𝑤 in 𝐺 such
that follow(𝑣𝑥, 𝑣𝑤) is an edge in 𝐺 and there exists an edge
from 𝑣𝑤 to Redmi 2A labeled“bad rating”. That is, counting
quantifier “= 0” on edge follow(𝑥𝑜, 𝑧2) enforces negation.

(2) Quantified graph patterns are also useful in knowledge
discovery. For example, QGP 𝑄4(𝑥𝑜) of Fig. 1 is to find
∘ all people who (a) are professors in the UK, (b) do not
have a PhD degree, and (c) have at least 𝑝 former PhD
students who are professors in the UK.

It carries negation (= 0) and numeric aggregate (≥ 𝑝). □

These counting quantifiers are not expressible in tradi-
tional graph patterns. Several questions about QGPs are
open. (1) How should QGPs be defined, to balance their ex-
pressive power and complexity? (2) Can we efficiently con-
duct graph pattern matching with QGPs in real-life graphs,
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Figure 1: Quantified graph patterns

which may have trillions of nodes and edges [20]? (3) How
can we make use of QGPs in emerging applications? The
need for studying these is highlighted in, e.g., social mar-
keting, knowledge discovery and cyber security.

Contributions. This paper aims to answer these questions.

(1) We propose QGPs (Section 2). Using simple counting
quantifiers, QGPs uniformly support numeric and ratio ag-
gregates, universal and existential quantification, and nega-
tion. We formalize quantified matching, i.e., graph pattern
matching with QGPs, by revising the traditional semantics
of pattern matching to incorporate counting quantifiers.

(2) We establish the complexity of quantified matching (Sec-
tion 3). We show that despite their increased expressivity,
QGPs do not make our lives much harder: quantified match-
ing is NP-complete in the absence of negation, the same as
subgraph isomorphism; and it is DP-complete otherwise.

(3) We provide a quantified matching algorithm (Section 4).
The algorithm unifies conventional pattern matching and
quantifier verification in a generic search process, and han-
dles negation by novel incremental evaluation IncQMatch.
As opposed to conventional incremental settings, IncQMatch
acts in response to changes in patterns, not in graphs, and
is optimal by performing only necessary verification.

(4) We develop parallel algorithms for quantified matching
(Section 5). We identify a practical condition under which
quantified matching is parallel scalable, i.e., guaranteeing
provable reduction in sequential running time with the in-
crease of processors. Under the condition, we develop graph
partition and QGP matching algorithms, both parallel scal-
able, by exploring inter and intra-fragment parallelism.

(5) As an application of QGPs, we introduce quantified graph
association rules (QGARs; Section 6). QGARs help us iden-
tify potential customers in social graphs, and (positive and
negative) correlations in knowledge graphs. We propose sup-
port and confidence metrics for QGARs, a departure from
their conventional counterparts. We also show that the
(parallel) quantified matching algorithms can be readily ex-
tended to identify interesting entities with QGARs.

(6) Using real-life and synthetic graphs, we experimentally
verify the effectiveness of QGPs and the scalability of our al-
gorithms (Section 7). We find the following. (a) Quantified
matching is feasible on large graphs. It takes 125 seconds on
graphs of 150 millions nodes and edges by using 4 proces-
sors, and 42.3 seconds with 20 processors. (b) Our matching

(resp. partition) algorithm is parallel scalable: it is on aver-
age 2.8 (resp. 3.5) and 3.2 (resp. 2.5) times faster on real-life
social and knowledge graphs, respectively, when the number
of processors increases from 4 to 20. (c) QGARs capture be-
havior patterns in social and knowledge graphs that cannot
be expressed with conventional graph patterns.

We contend that QGPs and QGARs are useful in emerging
applications such as social marketing and knowledge discov-
ery. Despite the increased expressivity, they yield practical
tools over large real-world graphs, which can be built upon
existing (parallel) graph analytic systems.
Proofs and optimization strategies are given in Appendix.

Related work. We categorize the related work as follows.

Quantified graph querying. The need for counting in graph
queries has long been recognized. SPARQLog [28] extends
SPARQL with first-order logic (FO) rules, including existen-
tial and universal quantification over node variables. Rules
for social recommendation are studied in [30], using support
count as constraints. QGRAPH [10] annotates nodes and
edges with a counting range (count 0 as negated edge) to
specify the number of matches that must exist in a database.
Set regular path queries (SRPQ) [31] extends regular path
queries with quantification for group selection, to restrict
the nodes in one set connected to the nodes of another. For
social networks, SocialScope [5] and SNQL [32] are algebraic
languages with numeric aggregates on node and edge sets.

The study of QGPs is to strike a balance between the ex-
pressivity and the complexity. It differs from the prior work
in the following. (1) Using a uniform form of counting quan-
tifiers, QGPs support numeric and ratio aggregates (e.g., at
least 𝑝 friends and 80% of friends), and universal (100%)
and existential quantification (≥ 1). In contrast, previous
proposals do not allow at least one of these. (2) We focus
on graph pattern queries, which are widely used in social
media marketing and knowledge discovery; they are beyond
set regular expressions [31] and rules of [30]. (3) Quantified
matching with QGPs is DP-complete at worst, slightly higher
than conventional matching (NP-complete) in the polyno-
mial hierarchy [33]. In contrast, SPARQL and SPARQLog are
PSPACE-hard [28], and SRPQ takes EXPTIME [31]; while the
complexity bounds for QGRAPH [10], SocialScope [5] and
SNQL [32] are unknown, they are either more expensive than
QGPs (e.g., QGRAPH is a fragment of FO(count)), or can-
not express numeric and ratio quantifiers [5,32]. (4) No prior
work has studied parallel scalable algorithms for its queries.

Parallel pattern matching. A number of (parallel) match-
ing algorithms have been developed for subgraph isomor-
phism [22, 27, 35]. None of these addresses quantifiers. In
contrast, (1) in the same general framework [27] used by
these methods, our sequential quantified matching algo-
rithms cope with quantifiers and negated edges without in-
curring considerable cost; and (2) our parallel scalable algo-
rithms exploit both inter and intra-fragment parallelism for
effective quantifier verification in QGP evaluation.

Various strategies have been studied for graph partition
[6, 11, 23]. This work differs from the prior work in the fol-
lowing. (1) We propose a 𝑑-hop preserving partition scheme
such that the 𝑑-hop neighbor of each node is contained in a
fragment, and that all fragments have an even size, with
an approximation bound. Closest to ours is the 𝑛 hop-
guarantee partition [22]. However, [22] provides no approxi-
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mation bound to ensure both 𝑑-hop preserving and balanced
fragment sizes, especially for nodes with a high degree. (2)
We propose a partition algorithm that is parallel scalable, a
property that is not guaranteed by the prior strategies.

Quantified association rules. Association rules [3] are tradi-
tionally defined on relations of transaction data. Over rela-
tions, quantified association rules [38] and ratio rules [25]
impose value ranges or ratios (e.g., the aggregated ratio
of two attribute values) as constraints on attribute values.
There has also been recent work on extending association
rules to social networks [30, 36] and RDF knowledge bases,
which resorts to mining conventional rules and Horn rules
(as conjunctive binary predicates) [17] over tuples with ex-
tracted attributes from social graphs, instead of exploiting
graph patterns. Closer to this work is [16], which defines
association rules directly with patterns without quantifiers.

Our work on QGARs differs from the previous work in the
following. (1) As opposed to [3,25,38], QGARs extend asso-
ciation rules from relations to graphs. They call for topolog-
ical support and confidence metrics, since the conventional
support metric is not anti-monotonic in graphs. (2) QGARs
allow simple yet powerful counting quantifiers to be imposed
on matches of graph patterns, beyond attribute values. In
particular, rules of [25, 38] cannot express universal quan-
tification and negation. When it comes to graphs, (3) the
rules of [16] cannot express counting quantifiers, and limits
their consequent to be a single edge, and (4) applying QGPs
and QGARs becomes an intractable problem, as opposed to
PTIME for conventional rules in relations.

2. QUANTIFIED GRAPH PATTERNS
We next introduce quantified graph patterns QGPs. To

define QGPs, we first review conventional graph patterns.

2.1 Conventional Graph Pattern Matching
We consider labeled, directed graphs, defined as 𝐺 =

(𝑉,𝐸, 𝐿), where (1) 𝑉 is a finite set of nodes; (2) 𝐸 ⊆ 𝑉 ×𝑉
is a set of edges, in which (𝑣, 𝑣′) denotes an edge from node
𝑣 to 𝑣′; and (3) each node 𝑣 in 𝑉 (resp. edge 𝑒 in 𝐸) carries
𝐿(𝑣) (resp. 𝐿(𝑒)), indicating its label or content as com-
monly found in social networks and property graphs.
Two example graphs are depicted in Fig. 2.

We review two notions of subgraphs. (1) A graph 𝐺′ =
(𝑉 ′, 𝐸′, 𝐿′) is a subgraph of 𝐺 = (𝑉,𝐸, 𝐿), denoted by 𝐺′ ⊆
𝐺, if 𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸, and for each edge 𝑒 ∈ 𝐸′ (resp. node
𝑣 ∈ 𝑉 ′), 𝐿′(𝑒) = 𝐿(𝑒) (resp. 𝐿′(𝑣) = 𝐿(𝑣)). (2) We say that
𝐺′ is a subgraph induced by a set 𝑉 ′ of nodes if 𝐺′ ⊆ 𝐺 and
𝐸′ consists of all the edges in 𝐺 whose endpoints are in 𝑉 ′.

Patterns. A graph pattern is traditionally defined as a graph
𝑄(𝑥𝑜) = (𝑉𝑄, 𝐸𝑄, 𝐿𝑄), where (1) 𝑉𝑄 (resp. 𝐸𝑄) is a set of
pattern nodes (resp. edges), (2) 𝐿𝑄 is a function that assigns
a node label 𝐿𝑄(𝑢) (resp. edge label 𝐿𝑄(𝑒)) to each pattern
node 𝑢 ∈ 𝑉𝑄 (resp. edge 𝑒 ∈ 𝐸𝑄), and (3) 𝑥𝑜 is a node in
𝑉𝑄, referred to as the query focus of 𝑄, for search intent.

Pattern matching. A match of pattern 𝑄 in graph 𝐺 is a bi-

jective function ℎ from nodes of 𝑄 to nodes of a subgraph 𝐺′

of 𝐺, such that (a) for each node 𝑢 ∈ 𝑉𝑄, 𝐿𝑄(𝑢) = 𝐿(ℎ(𝑢)),
and (b) (𝑢, 𝑢′) is an edge in 𝑄 if and only if (ℎ(𝑢), ℎ(𝑢′))
is an edge in 𝐺′, and 𝐿𝑄(𝑢, 𝑢′) = 𝐿(ℎ(𝑢), ℎ(𝑢′)). From ℎ,
subgraph 𝐺′ can be readily deduced.
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Figure 2: Graphs

We denote by 𝑄(𝐺) the set of matches of 𝑄 in 𝐺, i.e., the
set of bijective functions ℎ that induce a match of 𝑄 in 𝐺.
Query answer is the set of all matches of 𝑥𝑜 in 𝑄(𝐺).
Given 𝑄(𝑥𝑜) and 𝐺, graph pattern matching is to compute

𝑄(𝑥𝑜, 𝐺), i.e., all matches of query focus 𝑥𝑜 in 𝐺 via 𝑄.

2.2 Quantified Graph Patterns
We next define QGPs, by extending conventional graph

patterns to express quantified search conditions.

Syntax. A quantified graph pattern (QGP) 𝑄(𝑥𝑜) is defined
as (𝑉𝑄, 𝐸𝑄, 𝐿𝑄, 𝑓), where 𝑉𝑄, 𝐸𝑄, 𝐿𝑄 and 𝑥𝑜 are the same
as their traditional counterparts, and 𝑓 is a function such
that for each edge 𝑒 ∈ 𝐸𝑄, 𝑓(𝑒) is a predicate of

∘ a positive form 𝜎(𝑒)⊙𝑝% for a real number 𝑝 ∈ (0, 100],
or 𝜎(𝑒)⊙ 𝑝 for a positive integer 𝑝, or

∘ 𝜎(𝑒) = 0, where 𝑒 is referred to as a negated edge.

Here ⊙ is either = or ≥, and 𝜎(𝑒) will be elaborated shortly.
We refer to 𝑓(𝑒) as the counting quantifier of 𝑒, and 𝑝% and
𝑝 as ratio and numeric aggregate, respectively.

Counting quantifiers express logic quantifiers as follows:

∘ negation when 𝑓(𝑒) is 𝜎(𝑒) = 0 (e.g., 𝑄3 in Example 1);
∘ existential quantification if 𝑓(𝑒) is 𝜎(𝑒) ≥ 1; and
∘ universal quantifier if 𝑓(𝑒) is 𝜎(𝑒) = 100% (e.g., 𝑄2).

A conventional pattern 𝑄 is a special case of QGP when
𝑓(𝑒) is 𝜎(𝑒) ≥ 1 for all edges 𝑒 in 𝑄, i.e., if 𝑄 has existential
quantification only. We leave out 𝑓(𝑒) if it is 𝜎(𝑒) ≥ 1.
We call a QGP 𝑄 positive if it contains no negated edges

(i.e., edges 𝑒 with 𝜎(𝑒) = 0), and negative otherwise.

Example 2: Graph patterns 𝑄1–𝑄4 given in Example 1 are
QGPs with various counting quantifiers, e.g., (1) edge (𝑥𝑜, 𝑧)
in 𝑄1 has a quantifier 𝜎(𝑥𝑜, 𝑧) ≥ 80%; (2) 𝑄2 has a universal
quantifier 𝜎(𝑥𝑜, 𝑧)=100% on edge (𝑥𝑜, 𝑧), and an existential
quantifier for edge (𝑧,Redmi 2A); and (3) 𝑄3 has a negated
edge (𝑥𝑜, 𝑧2) with 𝜎(𝑥𝑜, 𝑧2) = 0. Among the QGPs, 𝑄1 and
𝑄2 are positive, while 𝑄3 and 𝑄4 are negative. □

Remark. To strike a balance between the expressive power
and the complexity of pattern matching with QGPs in large-
scale graphs, we assume a predefined constant 𝑙 such that
on any simple path (i.e., a path that contains no cycle)
in 𝑄(𝑥𝑜), (a) there exist at most 𝑙 quantifiers that are not
existential, and (b) there exist no more than one negated
edge, i.e., we exclude “double negation” from QGPs.
The reason for imposing the restriction is twofold. (1)

Without the restriction, quantified patterns would be able
to express first-order logic (FO) on graphs. Indeed, FO sen-
tences 𝑃1𝑋1 . . . 𝑃𝑙𝑋𝑙 𝜑 can be encoded in such a pattern,
where 𝑃𝑖 is either ∀ or ∃, 𝜑 is a logic formula, and 𝑙 is un-
bounded. Such patterns inherit the complexity of FO [29], in
addition to #P complication. Then even the problem for de-
ciding whether there exists a graph that matches such a pat-
tern is beyond reach in practice. As will be seen shortly, the
restriction makes QGPs discovery and evaluation feasible in
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large-scale graphs. (2) Moreover, we find that QGPs with the
restriction suffice to express quantified patterns commonly
needed in real-life applications, for small 𝑙. Indeed, empiri-
cal study suggests that 𝑙 is at most 2, and “double negation”
is rare, as “99% of real-world queries are star-like” [18].
One can extend 𝑓(𝑒) to support >, ∕= and ≤ as ⊙, and

conjunctions of predicates. To simplify the discussion, we
focus on QGPs 𝑄(𝑥𝑜) in the simple form given above.

Semantics. We next give the semantics of QGPs. We con-
sider positive QGPs first, and then QGPs with negation.

Positive QGPs. We use the following notations. Striping
all quantifiers 𝑓(𝑒) off from a QGP 𝑄(𝑥𝑜), we obtain a
conventional pattern, referred to as the stratified pattern of
𝑄(𝑥𝑜) and denoted by 𝑄𝜋(𝑥𝑜). Consider an edge 𝑒 = (𝑢, 𝑢′)
in 𝑄(𝑥𝑜), a graph 𝐺 and nodes 𝑣𝑥 and 𝑣 in 𝐺. When 𝑥𝑜 is
mapped to 𝑣𝑥, we define the set of children of 𝑣 via 𝑒 and 𝑄,
denoted by 𝑀𝑒(𝑣𝑥, 𝑣,𝑄) when 𝐺 is clear from the context:

{𝑣′ ∣ ℎ ∈ 𝑄𝜋(𝐺), ℎ(𝑥𝑜) = 𝑣𝑥, ℎ(𝑒) = (𝑣, 𝑣′)},
i.e., the set of children of 𝑣 that match 𝑢′ when 𝑢 is mapped
to 𝑣, subject to the constraints of 𝑄𝜋. Abusing the notion
of isomorphic mapping, ℎ(𝑒) = (𝑣, 𝑣′) denotes ℎ(𝑢) = ℎ(𝑣),
ℎ(𝑢′) = ℎ(𝑣′), (𝑣, 𝑣′) ∈ 𝐺 and 𝐿𝑄(𝑢, 𝑢′) = 𝐿(𝑣, 𝑣′).
We define 𝑀𝑒(𝑣) = {𝑣′ ∣ (𝑣, 𝑣′) ∈ 𝐺,𝐿(𝑣, 𝑣′) = 𝐿𝑄(𝑒)},

the set of the children of 𝑣 connected by an 𝑒 edge.

For a positive QGP 𝑄(𝑥𝑜), a match ℎ0 ∈ 𝑄(𝐺) satisfies
the following conditions: for each node 𝑢 in 𝑄 and each
edge 𝑒 = (𝑢, 𝑢′) in 𝑄,

∘ if 𝑓(𝑒) is 𝜎(𝑒)⊙ 𝑝%, then ∣𝑀𝑒(ℎ0(𝑥𝑜),ℎ0(𝑢),𝑄)∣
∣𝑀𝑒(ℎ0(𝑢))∣ ⊙ 𝑝%, in

terms of the ratio of the number of children of 𝑣 via 𝑒
and 𝑄 to the total number of children of 𝑣 via 𝑒; and

∘ if 𝑓(𝑒) is 𝜎(𝑒) ⊙ 𝑝, then ∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣ ⊙ 𝑝, in
terms of the number of children of 𝑣 via 𝑒 and 𝑄.

That is, 𝜎(𝑒) is defined as ratio ∣𝑀𝑒(ℎ0(𝑥𝑜),ℎ0(𝑢),𝑄)∣
∣𝑀𝑒(ℎ0(𝑢))∣ or cardi-

nality ∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣, for 𝑝% or 𝑝, respectively. In-
tuitively, 𝜎(𝑒) requires that at least 𝑝% of nodes or 𝑝 nodes
in 𝑀𝑒(𝑣) are matches for 𝑢′ when 𝑣 is mapped to 𝑢. A
match in 𝑄(𝐺) must satisfy the topological constraints of
𝑄𝜋 and moreover, the counting quantifiers of 𝑄. Note that
the counting quantifier on edge 𝑒 = (𝑢, 𝑢′) is applied at each
match ℎ0(𝑢) of 𝑢, to enforce the semantics of counting.

We denote by 𝑄(𝑢,𝐺) the set of matches of a pattern node
𝑢, i.e., nodes 𝑣 = ℎ(𝑢) induced by all matches ℎ of 𝑄 in 𝐺.
The query answer of 𝑄(𝑥𝑜) in 𝐺 is defined as 𝑄(𝑥𝑜, 𝐺).

Example 3: For graph 𝐺1 in Fig. 2 and QGP 𝑄2 of Exam-
ple 1, 𝑄2(𝑥𝑜, 𝐺1) = {𝑥1, 𝑥2}. Indeed, 100% of the friends
of 𝑥1 and 𝑥2 recommend Redmi 2A. More specifically, for
pattern edge 𝑒 = follow(𝑥𝑜, 𝑧), when 𝑥𝑜 is mapped to 𝑥1 via
ℎ0, 𝑀𝑒(ℎ0(𝑥𝑜), 𝑥1, 𝑄) = {𝑣0}, which is the set 𝑀𝑒(𝑥1) of all
people whom 𝑥1 follows; similarly when 𝑥𝑜 is mapped to 𝑥2.
In contrast, while 𝑥3 matches 𝑥𝑜 via the stratified pattern of
𝑄2, 𝑥3 ∕∈ 𝑄2(𝑥𝑜, 𝐺1) since at least one user whom 𝑥3 follows
(i.e., 𝑣4) has no recom edge to Redmi 2A. □

symbols notations
𝑄(𝑥𝑜) QGP, defined as (𝑉𝑄, 𝐸𝑄, 𝐿𝑄, 𝑓)

𝑄(𝑥𝑜, 𝐺) query answer, the set of matches of 𝑥𝑜

𝑄𝜋(𝑥𝑜) stratified pattern of 𝑄 by removing quantifiers
𝐺′ ⊆ 𝐺 𝐺′ is a subgraph of 𝐺

𝑀𝑒(𝑣𝑥, 𝑣, 𝑄) {𝑣′ ∣ ℎ ∈ 𝑄𝜋(𝐺), ℎ(𝑥𝑜) = 𝑣𝑥, ℎ(𝑒) = (𝑣, 𝑣
′)}, 𝑒 = (𝑢, 𝑢′)

𝑀𝑒(𝑣) {𝑣′ ∣ (𝑣, 𝑣′) ∈ 𝐺,𝐿(𝑣, 𝑣′) = 𝐿𝑄(𝑒)}
𝜎(𝑒)⊙ 𝑝%

∣𝑀𝑒(ℎ0(𝑥𝑜),ℎ0(𝑢),𝑄)∣
∣𝑀𝑒(ℎ0(𝑢))∣ ⊙ 𝑝%, 𝑒 = (𝑢, 𝑢′), ℎ0 ∈ 𝑄(𝐺)

𝜎(𝑒)⊙ 𝑝 ∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣ ⊙ 𝑝, 𝑒 = (𝑢, 𝑢′), ℎ0 ∈ 𝑄(𝐺)
Π(𝑄) 𝑄(𝑥𝑜) excluding nodes with negated edges

𝑄+𝑒 by positifying a negated edge 𝑒 in 𝑄
𝑅(𝑥𝑜) QGAR 𝑄1(𝑥𝑜)⇒ 𝑄2(𝑥𝑜)

Table 1: Notations used in the paper

Negative QGPs. To cope with QGP 𝑄(𝑥𝑜) with negated
edges, we define the following: (1) Π(𝑄): the QGP induced
by those nodes in 𝑄(𝑥𝑜) that are connected to 𝑥𝑜 (via a path
from or to 𝑥𝑜) with non-negated edges in 𝑄(𝑥𝑜), i.e., Π(𝑄)
excludes all those nodes connected via at least one negated
edge; (2) 𝑄+𝑒, obtained by “positifying” a negated edge 𝑒 in
𝑄, i.e., by changing 𝑓(𝑒) from 𝜎(𝑒) = 0 to 𝜎(𝑒) ≥ 1; and (3)
𝐸−
𝑄 , the set of all negated edges in 𝑄.
Then in a graph 𝐺, query answer to 𝑄(𝑥𝑜) is defined as

𝑄(𝑥𝑜, 𝐺) = Π(𝑄)(𝑥𝑜, 𝐺) ∖
(∪

𝑒∈𝐸−
𝑄
Π(𝑄+𝑒)(𝑥𝑜, 𝐺)

)
.

That is, we enforce negation via set difference. One can
verify that for each node 𝑢 in 𝑄 and each negated edge
𝑒 = (𝑢, 𝑢′) in 𝑄, ∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣ = 0.
Example 4: Consider 𝐺1 and 𝑄3 of Example 1 with 𝑝=2.
Pattern Π(𝑄3), which excludes the negated edge 𝑒 = (𝑥𝑜, 𝑧2)
in 𝑄3, and Π(𝑄

+𝑒
3 ), which“positifies” 𝑒 in 𝑄3, are shown in

Fig. 3. One can verify the following: (1) Π(𝑄3)(𝑥𝑜, 𝐺1) is
{𝑥2, 𝑥3}; note that 𝑥1 is not a match since only 1 user whom
𝑥1 follows recommends Redmi 2A, and hence violates the
counting quantifier ≥ 𝑝; and (2) Π(𝑄+𝑒

2 ) is {𝑥3}, which is a
“negative” instance for 𝑄3. Hence, 𝑄3(𝑥𝑜, 𝐺1) is {𝑥2}, where
𝑥3 is excluded since he follows 𝑣4 who gave a bad rating on
Redmi 2A, i.e., violating the negation 𝜎(𝑒) = 0.
Similarly, for QGP 𝑄4 and graph 𝐺2 of Fig. 2, when 𝑝=2,

𝑄4(𝑥𝑜, 𝐺2) is {𝑥5, 𝑥6}. Note that node 𝑥4 matches the strat-
ified pattern of𝑄4, but it violates the negation on (𝑥𝑜, PhD),
which requires that matches of 𝑥𝑜 must not be a PhD.
As another example, consider 𝑄5(𝑥𝑜) with two negated

edges 𝑒1 = (Prof, UK) and 𝑒2 = (𝑧, PhD). It is to find
non-UK professors who supervised students who are profes-
sors but have no PhD degree. As shown in Fig. 3, Π(𝑄5)
finds professors who supervised students who are professors.
In contrast, Π(𝑄+𝑒1

5 ) finds such professors in the UK, and
Π(𝑄+𝑒2

5 ) (not shown) retrieves professors with students who
are professors and have a PhD. In a graph 𝐺, 𝑄(𝑥𝑜, 𝐺) =
Π(𝑄5)(𝑥𝑜, 𝐺) ∖ (Π(𝑄+𝑒1

5 )(𝑥𝑜, 𝐺) ∪Π(𝑄+𝑒2
5 )(𝑥𝑜, 𝐺)). □

The notations of this paper are summarized in Table 1.

3. THE COMPLEXITY OF QUANTIFIED
MATCHING

In the next three sections, we study quantified matching:
∘ Input: A QGP 𝑄(𝑥𝑜) and a graph 𝐺.
∘ Output: 𝑄(𝑥𝑜, 𝐺),

to compute the set of all matches of query focus 𝑥𝑜 of 𝑄 in
𝐺. We start with its complexity in this section.

Decision problem. Its decision problem, referred to as the
quantified matching problem, is stated as follows.
∘ Input: A QGP 𝑄(𝑥𝑜), a graph 𝐺 and a node 𝑣 in 𝐺.
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∘ Question: Is 𝑣 ∈ 𝑄(𝑥𝑜, 𝐺)?
When 𝑄(𝑥𝑜) is a conventional pattern, the problem is NP-

complete. When it comes to QGPs, however, ratio aggre-
gates 𝜎 ⊙ 𝑝% and negation 𝜎 = 0 increase the expressive
power, and make the analysis more intriguing. To handle
𝜎 ⊙ 𝑝%, for instance, a brute-force approach invokes an NP
algorithm that calls a #P oracle to check the ratio aggregate.
We show that while the increased expressive power of

QGPs comes with a price, their complexity bound does not
get much higher. In particular, #P is not necessary.

Theorem 1: The quantified matching problem remains NP-
complete for positive QGPs, and it becomes DP-complete for
(possibly negative) QGPs. □

Here DP is the class of languages recognized by oracle
machines that make a call to an NP oracle and a call to a
coNP oracle. That is, 𝐿 is in DP if there exist languages
𝐿1 ∈ NP and 𝐿2 ∈ coNP such that 𝐿 = 𝐿1 ∩ 𝐿2 [33].
That is, adding positive quantifiers to conventional graph

patterns does not increase the complexity, although ratio ag-
gregates add extra expressive power. Note that such positive
patterns alone are already useful in practice. In contrast, the
presence of negation makes quantified matching harder, but
it remains low in the polynomial hierarchy [33].
The proof is nontrivial. Below we present lemmas needed.
The lower bounds follow from the stronger results below,

which are in turn verified by reductions from Subgraph
Isomorphism and Exact-Clique, which are NP-complete
and DP-complete, respectively (cf. [33]).

Lemma 2: For QGPs with numeric aggregates only, the
quantified matching problem is NP-hard for positive QGPs,
and DP-hard for (possibly negative) QGPs. □

The upper bounds are verified by the next two lemmas.
In particular, Lemma 4 shows that ratio aggregates can be
encoded as numeric aggregates by transforming both query
𝑄 and graph 𝐺, in PTIME. This explains why positive QGPs
with ratio aggregates retain the same complexity as conven-
tional patterns, despite their increased expressivity.

Lemma 3: For QGPs with numeric aggregates only, the
quantified matching problem is in NP for positive QGPs, and
is in DP for (possibly negative) QGPs. □

Lemma 4: Any QGP 𝑄(𝑥𝑜) and graph 𝐺 can be transformed
in PTIME to QGP 𝑄𝑑(𝑥𝑜) with numeric aggregates only and
graph 𝐺𝑑, respectively, such that 𝑄(𝑥𝑜, 𝐺) = 𝑄𝑑(𝑥𝑜, 𝐺𝑑). □

Remark. As QGPs with quantifiers bearing ≤, ∕= and <
subsume the case when 𝜎(𝑒) = 0, quantified matching is
DP-hard for such QGPs. Due to the space limit, we focus on
≥, =, > and leave a full treatment to future work.

4. ALGORITHMS FOR QUANTIFIED
MATCHING

We next provide an algorithm, denoted by QMatch, for
quantified matching. It takes a QGP 𝑄(𝑥𝑜) and a graph 𝐺
as input, and computes 𝑄(𝑥𝑜, 𝐺) as output. It extends exist-
ing algorithms 𝒯 for conventional subgraph isomorphism, to
incorporate quantifier checking and process negated edges.

Generic graph pattern matching. We start by review-
ing a generic procedure for subgraph isomorphism, denoted
by Match and shown in Fig. 4, slightly adapted from [27]
to output 𝑄(𝑥𝑜, 𝐺) for query focus 𝑥𝑜. As observed in [27],

Algorithm Match

Input: pattern 𝑄(𝑥𝑜), graph 𝐺
Output: the answer set 𝑄(𝑥𝑜, 𝐺)

1. 𝑄(𝑥𝑜, 𝐺):= ∅; 𝑄(𝐺):=∅; 𝑀 := ∅;
2. for each 𝑢 of 𝑄 do
3. 𝐶(𝑢):=Filtercandidate(𝑄,𝐺, 𝑢);
4. if 𝐶(𝑢)=∅ then return ∅;
5. SubMatch(𝑄,𝐺,𝑀,𝑄(𝐺));
6. for each isomorphic mapping ℎ ∈ 𝑄(𝐺) do
7. 𝑄(𝑥𝑜, 𝐺):=𝑄(𝑥𝑜, 𝐺) ∪ {ℎ(𝑥𝑜)};
8. return 𝑄(𝑥𝑜, 𝐺);

Procedure SubMatch(𝑄,𝐺,𝑀,𝑄(𝐺))

1. if Verify(𝑀) then
2. 𝑄(𝐺):=𝑄(𝐺) ∪ {ℎ}; /*ℎ: the isomorphism defined by 𝑀*/
3. else 𝑢:=SelectNext(Q);
4. for each 𝑣 ∈ 𝐶(𝑢) not matched in 𝑀 do
5. if IsExtend(𝑄,𝐺,𝑀, 𝑢, 𝑣) then
6. 𝑀 := 𝑀 ∪ {(𝑢, 𝑣)};
7. SubMatch(𝑄,𝐺,𝑀,𝑄(𝐺));
8. Restore(𝑀,𝑢, 𝑣);
9. return ;

Figure 4: Generic search procedure Match

state-of-the-art graph pattern matching algorithms 𝒯 typi-
cally adopt Match, and differ only in how to optimize key
functions (e.g., SelectNext, IsExtend; see below). Given a
traditional pattern 𝑄(𝑥𝑜) and a graph 𝐺, Match initializes
𝑄(𝑥𝑜, 𝐺), as well as a partial match 𝑀 as a set of node
pairs (line 1). Each pair (𝑢, 𝑣) in 𝑀 denotes that a node
from 𝐺 matches a pattern node 𝑢 in 𝑄. It identifies a
candidate match set 𝐶(𝑢) for each pattern node 𝑢 in 𝑄
(lines 3-4) (FilterCandidate). If there exists a pattern node
𝑢 with no candidate, it returns ∅ (line 4). Otherwise, it
invokes SubMatch to compute all matches (isomorphic map-
pings) 𝑄(𝐺) (lines 5). It then computes and returns query
answer 𝑄(𝑥𝑜, 𝐺) from mappings ℎ ∈ 𝑄(𝐺) (lines 6-8).

Procedure SubMatch recursively extends partial match 𝑀
by using three key functions. (1) It picks a pattern node
𝑢 from 𝑄 that has no match yet (SelectNext, line 3). (2) It
then checks whether a candidate 𝑣 of 𝑢 not yet in𝑀 matches
𝑢 (IsExtend), and if so, it adds (𝑢, 𝑣) to 𝑀 (lines 4-6). (3)
It recursively calls SubMatch to extend 𝑀 with steps (1)
and (2) (line 7), and restores it when SubMatch backtracks
(line 8). If 𝑀 is a valid isomorphism (Verify, line 1), it adds
𝑀 to 𝑄(𝐺) (line 2). This continues until 𝑄(𝐺) is completed.

4.1 Quantified Graph Pattern Matching
Algorithm QMatch revises the generic Match to process

quantifiers. (1) It first adopts a dynamic selection and prun-
ing strategy to compute Π(𝑄)(𝑥𝑜, 𝐺). The dynamic search
picks top 𝑝 promising neighbors based on a potential score,
with 𝑝 adapted to the corresponding quantifiers. (2) It then
employs optimal incremental evaluation to process negated
edges, which maximally reuses cached matches for Π(𝑄)
when processing 𝑄+𝑒 for positified 𝑒, instead of recomputing
𝑄+𝑒(𝐺) starting from scratch. The strategies are supported
by optimized data structures and key functions from Match.

Auxiliary structures. QMatch maintains auxiliary structures
for each node 𝑣 in 𝐶(𝑢) as follows: (1) a Boolean variable
𝑋(𝑢, 𝑣) indicating whether 𝑣 is a match of 𝑢 via isomor-
phism from Π(𝑄) to 𝐺, and (2) a vector 𝑇 , where entry
𝑇 (𝑣, 𝑒) for an edge 𝑒=(𝑢, 𝑢′) in 𝑄 is a pair ⟨𝑐(𝑣, 𝑒), 𝑈(𝑣, 𝑒)⟩,
in which 𝑐 (resp. 𝑈 , initialized as 𝑀𝑒(𝑣)) records the current
size (resp. an estimate upper bound for) ∣𝑀𝑒(𝑣𝑥, 𝑣,𝑄)∣.
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Algorithm QMatch

Input: a QGP 𝑄(𝑥𝑜), graph 𝐺
Output: the answer set 𝑄(𝑥𝑜, 𝐺)

1. 𝑄(𝑥𝑜, 𝐺):= ∅; 𝑀 :=∅; Π(𝑄)(𝑥𝑜, 𝐺):=∅; Π(𝑄)(𝐺):=∅;
2. for each 𝑢 of 𝑄 do
3. initializes 𝐶(𝑢) and auxiliary structures;
4. Π(𝑄)(𝑥𝑜, 𝐺):=DMatch(Π(𝑄), 𝐺,𝑀,Π(𝑄)(𝐺));

5. for each negative edge 𝑒 in 𝐸−
𝑄 do

6. 𝑄+𝑒(𝑥𝑜, 𝐺):=IncQMatch(Π(𝑄)(𝑥𝑜, 𝐺), 𝑄+𝑒);
7. 𝑄(𝑥𝑜, 𝐺):=Π(𝑄)(𝑥𝑜, 𝐺) ∖∪

𝑒∈𝐸−
𝑄

𝑄+𝑒(𝑥𝑜, 𝐺);

8. return 𝑄(𝑥𝑜, 𝐺);

Figure 5: Algorithm QMatch

Algorithm. Algorithm QMatch (outlined in Fig. 5) revises
Match to process QGP 𝑄(𝑥𝑜) in three steps. (1) It first
initializes the candidate set and auxiliary structures with
a revised Filtercandidate (lines 1-3). For each pattern node
𝑢 in 𝑄(𝑥𝑜), it initializes (a) 𝐶(𝑢) with nodes 𝑣 of the same
label, and (b) 𝑋(𝑢, 𝑣) = ⊥, 𝑐(𝑣, 𝑒)=0 and 𝑈(𝑣, 𝑒) = ∣𝑀𝑒(𝑣)∣
for each 𝑒=(𝑢, 𝑢′) in 𝑄. It removes 𝑣 from 𝐶(𝑢) if 𝑈(𝑣, 𝑒)
does not satisfy the quantifier of 𝑒. (2) It next invokes a pro-
cedure DMatch revised from SubMatch in Fig. 4 to compute
Π(𝑄)(𝑥𝑜, 𝐺) (line 4). (3) It then processes each negated edge
𝑒 by constructing its positified pattern 𝑄+𝑒, and computes
𝑄+𝑒(𝑥𝑜, 𝐺) with an incremental procedure IncQMatch (lines
5-6). (4) It computes 𝑄(𝑥𝑜, 𝐺) by definition (line 7). We
next present DMatch, and defer IncQMatch to Section 4.2.

Example 5: Given 𝑄3 with 𝑝=2 (Fig. 1) and 𝐺1 (Fig. 2),
QMatch first computes Π(𝑄3)(𝑥𝑜, 𝐺1) (Fig. 3). It initializes
variables for nodes in 𝐺1, partially shown below (𝑖 ∈ [0, 4]).

X c U
𝑥1 𝑋(𝑥𝑜, 𝑥1)=⊥ 𝑐(𝑥1, (𝑥𝑜, 𝑧1))=0 𝑈(𝑥1, (𝑥𝑜, 𝑧1))=1
𝑥2 𝑋(𝑥𝑜, 𝑥2)=⊥ 𝑐(𝑥2, (𝑥𝑜, 𝑧1))=0 𝑈(𝑥2, (𝑥𝑜, 𝑧1))=2
𝑥3 𝑋(𝑥𝑜, 𝑥3)=⊥ 𝑐(𝑥3, (𝑥𝑜, 𝑧1))=0 𝑈(𝑥3, (𝑥𝑜, 𝑧1))=3
𝑣𝑖 𝑋(𝑥𝑜, 𝑣𝑖)=⊥ 𝑐(𝑣𝑖, (𝑧1,Redmi))=0 𝑈(𝑣𝑖, (𝑧1, Redmi))=1

At this stage, since 𝑈(𝑥1, (𝑥𝑜, 𝑧1))=1 ≤ 2, 𝑥1 fails the
quantifier of (𝑥𝑜, 𝑧1), and is removed from 𝐶(𝑥𝑜). □

Procedure DMatch. Given positive QGP Π(𝑄), DMatch
revises SubMatch (Fig 4) by adopting dynamic search. To
simplify the discussion, we consider numeric 𝜎(𝑒)⊙ 𝑝 first.

(1) Given a selected pattern node 𝑢′ (line 3 of SubMatch),
a candidate 𝑣 ∈ 𝐶(𝑢), and an edge 𝑒=(𝑢, 𝑢′) with quantifier
𝜎(𝑒)⊙𝑝, DMatch dynamically finds 𝑝 best nodes (recorded in
a heap 𝑆𝑃 (𝑢

′)) from 𝐶(𝑢′) that are children of 𝑣 (lines 4-5 of
SubMatch, IsExtend), using selection and pruning rules (see
Appendix B). Denote as 𝑃 (𝑣′) the parent set of 𝑣′ in 𝐺, the
potential of a match 𝑣′ ∈ 𝐶(𝑢′) is defined as:

(1 +
∣𝑃 (𝑣′) ∩ 𝐶(𝑢)∣

∣𝐶(𝑢)∣ ) ∗ Σ∀𝑒=(𝑢′,𝑢′′)
𝑈(𝑣′, 𝑒)

𝑝𝑒
,

where 𝑝𝑒 is the number in 𝜎(𝑒) ⊙ 𝑝𝑒 for edge 𝑒=(𝑢′, 𝑢′′). It
favors those candidates that (a) benefit the verification of
more candidates during future backtracking, and (b) have
high upper bounds w.r.t. 𝑝 (hence more likely to be a match
itself). We select candidates with the highest scores.

DMatch then updates 𝑀 by including (𝑢, 𝑣), and recur-
sively conducts the next level of search by forking 𝑝 ver-
ifications in the order of the selected 𝑝 candidates (line 7,
SubMatch). It keeps a record of𝑀 and a cursor to memorize
the candidates in 𝑆𝑃 for backtracking, using a stack.

(2) When backtracking to a candidate 𝑣 ∈ 𝑆𝑃 (𝑢) from a
child 𝑣′ of 𝑣, DMatch restores 𝑀 and the cursor (Restore,

line 8 of SubMatch). It next dynamically updates 𝑆𝑃 (𝑢).
(a) If 𝑋(𝑢′, 𝑣′)=false, it reduces 𝑈(𝑣, 𝑒) by 1. (b) It applies
the selection and pruning rules to 𝐶(𝑢) using the updated po-
tentials w.r.t. the changes in (a). If the upper bound 𝑈(𝑣, 𝑒)
fails the quantifier of 𝑒, 𝑣 is removed from 𝐶(𝑢) and 𝑆𝑃 (𝑢)
without further verifying its other children. Otherwise, it
picks a new set 𝑆𝑃 (𝑢) of candidates with top potentials.

(3) When 𝑀 is complete, i.e., each node 𝑢 in Π(𝑄) has
a match in 𝑀 , DMatch checks whether 𝑀 is an isomorphic
mapping. If so, it updates𝑋(𝑢, 𝑣)=true for each pair (𝑢, 𝑣) ∈
𝑀 , and increases the counter 𝑐(𝑣, 𝑒). It then checks whether
the counters satisfy the quantifiers of Π(𝑄). If so, it adds
𝑣𝑥 to 𝑄(𝑥𝑜, 𝐺). Otherwise, it proceeds. DMatch terminates
when all the candidates of 𝑥𝑜 are checked.

Example 6: Continuing with Example 5, given 𝐶(𝑥𝑜) =
{𝑥2, 𝑥3}, DMatch selects 𝑥2, and extends𝑀 with (𝑥𝑜, 𝑥2). In
contrast to Fig 4, DMatch picks top 2 best candidates 𝑆𝑃 (𝑧1)
= {𝑣2, 𝑣1} from 𝐶(𝑧1) following edge 𝑒=(𝑥𝑜, 𝑧1). This adds
(𝑧1, 𝑣2) to 𝑀 , and (Redmi 2A, Redmi 2A) for the next round.
At verification, it finds 𝑀 a complete isomorphism, and up-
dates 𝑋(𝑣𝑜, 𝑥2)=true and 𝑐(𝑥2, 𝑒)=1. As 𝑥2 cannot be ver-
ified as a match via Π(𝑄3) yet, DMatch next verifies 𝑣1,
and sets 𝑐(𝑥2, 𝑒)=2. As 𝑥2 is a match and has a counter
satisfying the quantifier, it is added to Π(𝑄3)(𝑥𝑜, 𝐺1). The
updated variables for candidates of 𝐶(𝑥𝑜) are as follows.

X c U
𝑥2 𝑋(𝑥𝑜, 𝑥2)=True 𝑐(𝑥2, (𝑥𝑜, 𝑧1))=2 𝑈(𝑥2, (𝑥𝑜, 𝑧1))=2
𝑥3 𝑋(𝑥𝑜, 𝑥3)=⊥ 𝑐(𝑥3, (𝑥𝑜, 𝑧1))=2 𝑈(𝑥3, (𝑥𝑜, 𝑧1))=3

DMatch next verifies 𝑥3. It starts by selecting top 2 candi-
dates 𝑆𝑃 (𝑥3)={𝑣2, 𝑣3}. Once 𝑣3 is processed, it finds that 𝑥3

is in an isomorphism with 𝑐(𝑥3, 𝑒)=2, and hence is a match.
It returns {𝑥2, 𝑥3} as Π(𝑄3)(𝑥𝑜, 𝐺1). □

One can readily verify the following (see Appendix A).

Lemma 5: DMatch computes Π(𝑄)(𝑥𝑜, 𝐺) by (a) verifying
no more candidates than any Match-based subgraph isomor-
phism algorithm 𝒯 , and (b) with space cost 𝑂(𝑝𝑚∣𝑄∣+ ∣𝑉 ∣),
where 𝑝𝑚 is the largest constant in all quantifiers of 𝑄. □

That is, quantified matching can be evaluated following
conventional 𝒯 without incurring significant extra time and
space cost. The performance of DMatch is further improved
by selection and pruning rules presented in Appendix B.

Ratio aggregates. DMatch can be readily extended to
process ratio aggregates. Indeed, for each pattern 𝑒=(𝑢, 𝑢′)
with 𝜎(𝑒) ⊙ 𝑝% and at a candidate 𝑣 of 𝑢, DMatch “trans-
forms” the quantifier to its equivalent numeric counterpart
𝜎(𝑒) ⊙ 𝑝′ as follows. (a) DMatch computes ∣𝑀𝑒(𝑣)∣ by defi-
nition. (2) It sets 𝑝′ = ⌊∣𝑀𝑒(𝑣)∣ ∗ 𝑝%⌋. The transformation
for 𝑒 preserves all the exact matches for ratio quantifiers by
definition, and takes a linear scan of 𝐺 (in 𝑂(∣𝐺∣) time). In
addition, QMatch easily extends to QGPs with quantifiers
𝜎(𝑒) > 𝑝, by replacing it with 𝜎(𝑒) ≥ 𝑝+ 1.

4.2 Incremental Quantified Matching
If Π(𝑄)(𝑥𝑜, 𝐺) is nonempty, QMatch proceeds to compute

Π(𝑄+𝑒)(𝑥𝑜, 𝐺) for each negated edge 𝑒 ∈ 𝐸−
𝑄 (lines 5-6,

Fig. 5). Observe the following: (1) Π(𝑄+𝑒)=Π(𝑄)⊕Δ𝐸, i.e.,
Π(𝑄+𝑒)“expands”Π(𝑄) with a set Δ𝐸 of positive edges; and
(2) for any node 𝑢 in Π(𝑄), Π(𝑄+𝑒)(𝑢,𝐺) ⊆ Π(𝑄)(𝑢,𝐺),
since Π(𝑄+𝑒) adds more constraints to Π(𝑄).

This observation motivates us to study a novel incremen-
tal quantified matching problem. Given a graph 𝐺, a QGP 𝑄,
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computed matches 𝑄(𝑢,𝐺) for each 𝑢 in 𝑄, and a new QGP
𝑄′=𝑄⊕Δ𝐸, it is to compute 𝑄′(𝑥𝑜, 𝐺) = 𝑄(𝑥𝑜, 𝐺)⊕Δ𝑂,
i.e., to find changes Δ𝑂 in the output. It aims to make
maximum use of cached results 𝑄(𝑢,𝐺), instead of com-
puting 𝑄′(𝑥𝑜, 𝐺) from scratch. As opposed to conventional
incremental problems [15, 34], we compute Δ𝑂 in response
to changes in query 𝑄, rather than to changes in graph 𝐺.

As observed in [34], the complexity of incremental graph
problems should be measured in the size of affected area,
which indicates the amount of work that is necessarily per-
formed by any algorithm for the incremental problem. For
pattern matching via subgraph isomorphism, the number
of verifications is typically the major bottleneck. Below we
identify affected area for quantified matching, to character-
ize the optimality of incremental quantified matching.

Optimal incremental quantified matching. Given 𝑄
and Π(𝑄+𝑒), the affected area is defined as

AFF =
∪

𝐶(𝑢𝑖) ∪ {𝑁(𝑣) ∣ 𝑣 ∈ 𝐶(𝑢𝑖)},
where (1) 𝑢𝑖 is in edge 𝑒𝑖=(𝑢𝑖, 𝑢

′
𝑖) or (𝑢

′
𝑖, 𝑢𝑖) for each

𝑒𝑖 ∈ Δ𝐸; (2) 𝐶(𝑢𝑖) includes (a) the match sets cached after
DMatch processed Π(𝑄); and (b) the candidate sets initial-
ized by QMatch (line 3 of Fig 5) for new nodes 𝑢𝑖 introduced
by Π(𝑄+𝑒), which have to be checked; and (c)𝑁(𝑣) is the set
of nodes in cached 𝐶(⋅) that are reachable from (or reached
by) 𝑣, via paths that contains only the nodes in 𝐶(⋅).
An incremental quantified matching algorithm is optimal

if it incurs𝑂(∣AFF∣) number of verifications. Intuitively, AFF
is the set of nodes that are necessarily verified in response
to Δ𝐸, for any such algorithms to find exact matches.

Proposition 6: There exists an incremental algorithm that
computes each Π(𝑄+𝑒)(𝑥𝑜, 𝐺) by conducting at most ∣AFF∣
rounds of verification. □

As a proof, we present an optimal algorithm IncQMatch.

Procedure IncQMatch. Algorithm IncQMatch (used in
line 6, Fig. 5) incrementally computes Π(𝑄+𝑒)(𝑥𝑜, 𝐺) by
reusing the cached match sets and the counters computed
in the process of DMatch for Π(𝑄). It works as follows.

(1) IncQMatch initializes Π(𝑄+𝑒)(𝑢,𝐺) for each 𝑢 with the
cached matches Π(𝑄)(𝑢,𝐺). It then computes the edge set
Δ𝐸 in Π(𝑄+𝑒)(𝑥𝑜, 𝐺) to be “inserted” into Π(𝑄).

(2) IncQMatch then iteratively processes the edges 𝑒=(𝑢, 𝑢′)
in Δ𝐸. It first identifies those cached matches that are af-
fected by the insertion. It considers two possible cases below.
∘ Both 𝑢 and 𝑢′ are in Π(𝑄). For each match 𝑣 ∈
Π(𝑄)(𝑢,𝐺), IncQMatch adds 𝑣 to AFF and veri-
fies whether 𝑣 matches 𝑢 via isomorphism following
DMatch. If 𝑋(𝑢, 𝑣)=true, it counts 𝑐(𝑣, 𝑒) as the num-
ber of 𝑣’s children 𝑣′ that are matches of 𝑢′ and checks
the quantifier of 𝑒. If 𝑐(𝑣, 𝑒) satisfies the quantifier, no
change happens. Otherwise (𝑐(𝑣, 𝑒) fails the quantifier)
IncQMatch removes 𝑣 from Π(𝑄+𝑒)(𝑢,𝐺).

∘ One or both of nodes 𝑢 and 𝑢′ are not in Π(𝑄). For
the new node 𝑢 (or 𝑢′), IncQMatch treats 𝑒 as a single
edge pattern and verifies each candidate 𝑣1 in 𝐶(𝑢).
Since Π(𝑄) is a “sub-pattern” of Π(𝑄+𝑒) and Π(𝑄+𝑒)
is connected, we need only to inspect those matches 𝑣1
reachable from some nodes in cached 𝐶(.), i.e., 𝑣1 ∈
𝑁(𝑣2) for some cached 𝑣2; hence 𝑣1 ∈ AFF.

For each 𝑣 removed in the steps above, QMatch then prop-
agates the impact recursively by (a) reducing all the counters

of 𝑣’s parents by 1, and (b) removing invalid matches due to
the updated counters and adds them to AFF, following the
same backtracking verification as in DMatch, until a fixpoint
is reached, i.e., no more matches can be removed.

Example 7: Continuing with Example 6, QMatch invokes

IncQMatch to process Π(𝑄
+(𝑥𝑜,𝑧2)
3 ), with Δ𝐸 = {(𝑥𝑜, 𝑧2),

(𝑧2, Redmi 2A)} (see Fig. 3) as follows.
(1) IncQMatch first initializes the candidate sets as the
cached matches in DMatch (shown below). For node 𝑧2 not
in Π(𝑄), IncQMatch finds 𝐶(𝑧2) as initialized in QMatch.

pattern node 𝐶(⋅)
𝑥𝑜 𝐶(𝑥𝑜)={𝑥2, 𝑥3}
𝑧1 𝐶(𝑧1)={𝑣1, 𝑣2, 𝑣3}
𝑧2 𝐶(𝑧2)={𝑣4}

Redmi 𝐶(Redmi 2A)={Redmi 2A}

(2) It starts with edge (𝑧2, Redmi 2A), and initializes AFF
as 𝐶(𝑧2) ∪ 𝐶(Redmi 2A)={𝑣4, Redmi 2A}. It next checks
whether 𝑣4 and Redmi 2A remain matches with counter sat-
isfying the quantifiers. In this process, it only visits the two
cached matches 𝑥3 and 𝑣3 following the pattern edges. As
both nodes are matches, no change needs to be made.

(3) IncQMatch next processes edge (𝑥𝑜, 𝑧2). It adds the set
𝐶(𝑥𝑜)={𝑥2, 𝑥3} to AFF, and checks whether 𝑥2 and 𝑥3 re-
main matches. As 𝑥2 has no edge to 𝑣4, 𝑋(𝑥𝑜, 𝑥2) is updated
to false, and 𝑥2 is removed from 𝐶(𝑥𝑜). It next finds that
𝑥3 is a valid match, by visiting 𝑣2, 𝑣3, Redmi 2A, and 𝑣4.
As no more matches can be removed, IncQMatch stops the

verification. It returns Π(𝑄
+(𝑥𝑜,𝑧2)
3 )(𝑥𝑜, 𝐺1) as {𝑥3}. After

the process, AFF contains {𝑣4, 𝑥2, 𝑥3, 𝑣2, 𝑣3, Redmi 2A}. It
incurs in total 3 rounds of verification for 𝑣4, 𝑥2 and 𝑥3. □

Contrast IncQMatch with DMatch. (1) IncQMatch only
visits the cached matches and their edges, rather than the
entire 𝐺. (2) IncQMatch incurs at most ∣AFF∣ rounds of ver-
ifications; hence it is optimal w.r.t. incremental complexity.

Analysis of QMatch. Algorithm QMatch correctly com-
putes 𝑄(𝑥𝑜, 𝐺) following the definition of quantified match-
ing (Section 2.2). For its complexity, observe the following.

(1) If 𝑄 is positive, i.e., 𝐸−
𝑄 = ∅, IncQMatch is not needed.

Then QMatch and a conventional Match-based algorithm 𝒯
for subgraph isomorphism have the same complexity. Quan-
tifier checking is incorporated into the search process.

(2) If 𝐸−
𝑄 is nonempty, IncQMatch invokes at most ∣𝐸−

𝑄 ∣
rounds of incremental computation by optimal IncQMatch,
while ∣𝐸−

𝑄 ∣ ≤ ∣𝑄∣ and 𝑄 is typically small in practice. For
each round, the overall time taken is bounded by ∣AFF∣ ∗𝐾,
where 𝐾 is the cost of a single verification.

Put together, QMatch takes 𝑂(𝑡(𝒯 )+ ∣𝐸−
𝑄 ∣∣AFF∣∗𝐾) time

in total, where 𝑡(𝒯 ) is the time complexity of a Match-based
algorithm 𝒯 for conventional subgraph isomorphism. We
find in our experiments that QMatch and 𝒯 have comparable
performance, due to small ∣𝐸−

𝑄 ∣ and ∣AFF∣. Moreover, exist-
ing optimization for 𝒯 can be readily applied to QMatch.
Algorithm QMatch also makes use of graph simulation [21]

to filter candidates and reduce verification cost. We defer
this optimization strategy to Appendix-B.

5. PARALLEL QUANTIFIED MATCHING
Quantified matching – in fact even conventional subgraph

isomorphism – may be cost-prohibitive over big graphs 𝐺.
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This suggests that we develop a parallel algorithm for quan-
tified matching that guarantees to scale with big 𝐺. We
develop such an algorithm, which makes quantified match-
ing feasible in real-life graphs, despite its DP complexity.

5.1 Parallel Scalability
To characterize the effectiveness of parallelism, we advo-

cate a notion of parallel scalability following [16, 26]. Con-
sider a problem 𝐼 posed on a graph 𝐺. We denote by
𝑡(∣𝐼∣, ∣𝐺∣) the running time of the best sequential algorithm
for solving 𝐼 on 𝐺, i.e., one with the least worst-case com-
plexity among all algorithms for 𝐼. For a parallel algorithm,
we denote by 𝑇 (∣𝐼∣, ∣𝐺∣, 𝑛) the time it takes to solve 𝐼 on
𝐺 by using 𝑛 processors, taking 𝑛 as a parameter. Here we
assume 𝑛≪ ∣𝐺∣, i.e., the number of processors does not ex-
ceed the size of 𝐺; this typically holds in practice as 𝐺 often
has trillions of nodes and edges, much larger than 𝑛 [20].

Parallel scalability. An algorithm is parallel scalable if

𝑇 (∣𝐼∣, ∣𝐺∣, 𝑛) = 𝑂(
𝑡(∣𝐼∣, ∣𝐺∣)

𝑛
) + (𝑛∣𝐼∣)𝑂(1).

That is, the parallel algorithm achieves a linear reduc-
tion in sequential running time, plus a “bookkeeping” cost
𝑂((𝑛∣𝐼∣)𝑙) that is independent of ∣𝐺∣, for a constant 𝑙.
A parallel scalable algorithm guarantees that the more

processors are used, the less time it takes to solve 𝐼 on 𝐺.
Hence given a big graph 𝐺, it is feasible to efficiently process
𝐼 over 𝐺 by adding processors when needed.

5.2 Parallel Scalable Algorithm
Parallel scalability is within reach for quantified matching

under certain condition. We first present some notations.
For a node 𝑣 in graph 𝐺 and an integer 𝑑, the 𝑑-hop neighbor
𝑁𝑑(𝑣) of 𝑣 is defined as the subgraph of 𝐺 induced by the
nodes within 𝑑 hops of 𝑣. The radius of a QGP 𝑄(𝑥𝑜) is the
longest shortest distance between 𝑥𝑜 and any node in 𝑄.
The main result of the section is as follows.

Theorem 7: There exists an algorithm PQMatch that given
QGP 𝑄(𝑥𝑜) and graph 𝐺, computes 𝑄(𝑥𝑜, 𝐺). It is parallel

scalable for graphs 𝐺 with
∑

𝑣∈𝐺 ∣𝑁𝑑(𝑣)∣ ≤ 𝐶𝑑 ∗ ∣𝐺∣
𝑛
, taking

𝑂( 𝑡(𝑄,𝐺)
𝑛

+ 𝑛) time, where 𝑑 is the radius of 𝑄(𝑥𝑜), 𝐶𝑑 is
a predefined constant, and 𝑡(𝑄,𝐺) is the worst-case running
time of sequential quantified matching algorithms. □

The condition is practical: 99% of real-life patterns have
radius at most 2 [18], and the average node degree is 14.3
in social graphs [12]; thus ∣𝑁𝑑(𝑣)∣ is often a small constant.
In addition, we will show that PQMatch can be adapted to
evaluate QGPs 𝑄 with radius larger than 𝑑.

As a proof, below we present PQMatch. The algorithm
works with a coordinator 𝑆𝑐 and 𝑛 workers (processors) 𝑆𝑖.
It utilizes two levels of parallelism. (a) At the inter-fragment
parallelism level, it creates a partition scheme of 𝐺 over mul-
tiple processors once for all, so that quantified matching is
performed on all these fragments in parallel. The same par-
tition is used for all QGPs 𝑄(𝑥0) within radius 𝑑. (b) At the
intra-fragment level, local matching within each fragment is
further conducted by multiple threads in parallel.

Hop preserving partition. We start with graph partition.
To maximize parallelism, a partition scheme should guaran-
tee that for any graph 𝐺, (1) each of 𝑛 processors manages a
small fragment of approximately equal size, and (2) a query

can be evaluated locally at each fragment without incurring
inter-fragment communication. We propose such a scheme.
Given a graph 𝐺 = (𝑉,𝐸, 𝐿), an integer 𝑑 and a node

set 𝑉 ′ ⊆ 𝑉 , a 𝑑-hop preserving partition 𝒫𝑑(𝑉 ′) of 𝑉 ′ dis-
tributes 𝐺 to a set of 𝑛 processors such that it is

(1) balanced: each processor 𝑆𝑖 manages a fragment 𝐹𝑖,
which contains the subgraph 𝐺𝑖 of 𝐺 induced by a set 𝑉𝑖
of nodes, such that

∪
𝑉𝑖=𝑉 ′ (𝑖 ∈ [1, 𝑛]) and the size of 𝐹𝑖 is

bounded by 𝑐 ∗ ∣𝐺∣
𝑛
, for a small constant 𝑐 < 𝐶𝑑; and

(2) covering: each node 𝑣 ∈ 𝑉 ′ is covered by 𝒫𝑑(𝑉 ′), i.e.,
there exists a fragment 𝐹𝑖 such that 𝑁𝑑(𝑣) is in 𝐹𝑖.
We say that 𝒫𝑑(𝑉 ′) is complete if ∣𝑉 ′∣ = ∣𝑉 ∣.
One naturally wants to find an optimal partition such that

the number ∣𝑉 ′∣ of covered nodes is maximized. Although
desirable, creating a balanced 𝑑-hop preserving partition is
NP-hard. Indeed, conventional balanced graph partition is
a special case when 𝑑=1, which is already NP-hard [6].

Parallel 𝑑-hop preserving partition. We provide an ap-
proximation algorithm for 𝑑-hop preserving partition with
an approximation ratio. Better still, it is parallel scalable.

Lemma 8: If
∑

𝑣∈𝐺 ∣𝑁𝑑(𝑣)∣ ≤ 𝐶𝑑∗ ∣𝐺∣
𝑛
, for any constant 𝜖 >

0, there is a parallel scalable algorithm with approximation
ratio 1 + 𝜖 to compute a 𝑑-hop preserving partition. □

Below we present such an algorithm, denoted by DPar.
Given a graph 𝐺 stored at the coordinator 𝑆𝑐, it starts with
a base partition of 𝐺, where each fragment 𝐹𝑖 has a balanced

size bounded by 𝑐∗ ∣𝐺∣
𝑛
. This can be done by using an existing

balanced graph partition strategy (e.g., [23]). DPar then
extends each fragment 𝐹𝑖 to a 𝑑-hop preserving counterpart.

(1) It first finds the “border nodes” 𝐹𝑖.𝑂 of 𝐹𝑖 that have 𝑑-
hop neighbors not residing in 𝐹𝑖, by traversing 𝐹𝑖 in parallel.

(2) Each worker 𝑆𝑖 then computes and loads 𝑁𝑑(𝑣) for each
𝑣 ∈ 𝐹𝑖.𝑂, by “traversing”𝐺 via disk-based parallel breadth-
first search (BFS) search [24]. Moreover, DPar uses a bal-
anced loading strategy (see below) to load approximately
equal amount of data to each worker in the search. The
process repeats until no fragments can be expanded.

Balancing strategy. DPar enforces a balanced fragment size

𝑐∗ ∣𝐺∣
𝑛
. It conducts a 𝑑-hop preserving partition 𝒫𝑑(𝑉 ′) with

approximation ratio 1−𝜖 subject to the bound, for any given
𝜖. That is, if the size of nodes covered by the optimal 𝑑-hop
partition in 𝐺 is ∣𝑉 ∗∣, then 𝒫𝑑(𝑉 ′) has ∣𝑉 ′∣ ≥ (1− 𝜖)∣𝑉 ∗∣.
More specifically, at the BFS phase, for each 𝑣 ∈ ∪

𝐹𝑖.𝑂,
DPar assigns 𝑁𝑑(𝑣)’s to workers by reduction to Multiple
Knapsack problem (MKP) [13]. Given a set of weighted items
(with a value) and a set of knapsack with capacities, MKP
is to assign each item to a knapsack subject to its capacity,
such that the total value is maximized. DPar treats each
𝑁𝑑(𝑣) as an item with value 1 and weight ∣𝑁𝑑(𝑣)∣, and each
fragment as a knapsack with capacity 𝑐 ∗ ∣𝐺∣

𝑛
− ∣𝐹𝑖∣, with

the number of covered nodes as the total value. It solves
the MKP instance by invoking the algorithm of [13], which
computes an assignment with approximation ratio 1 + 𝜖 for

any given 𝜖, in 𝑂(∣𝑉 ′∣ 1𝜖 ) time. Each worker 𝑆𝑖 then loads its
assigned 𝑁𝑑(𝑣). This gives us a 𝑑-hop preserving partition
𝒫𝑑 with ratio 1 + 𝜖 (see Appendix A for the reduction).

Partition 𝒫𝑑 may not be complete, i.e., not every node in
𝑉 is covered. To maximize inter-fragment parallelism, DPar
“completes”𝒫𝑑 while preserving the balanced partition size.
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Algorithm PQMatch

Input: QGP 𝑄(𝑥𝑜), graph 𝐺, coordinator 𝑆𝑐, 𝑛 workers 𝑆1, . . . , 𝑆𝑛
Output: the answer set 𝑄(𝑥𝑜, 𝐺).

1. DPar(𝐺); /*Preprocessing*/
/*executed at coordinator 𝑆𝑐*/
2. 𝑄(𝑥𝑜, 𝐺):= ∅; post 𝑄 to each worker;
3. if every worker 𝑆𝑖 returns answer 𝑄(𝑥𝑜, 𝐹𝑖) then
4. 𝑄(𝑥𝑜, 𝐺):=

∪
𝑄(𝑥𝑜, 𝐹𝑖);

5. return 𝑄(𝑥𝑜, 𝐺);
/*executed at each worker in parallel*/
6. 𝑄(𝑥𝑜, 𝐹𝑖):= mQMatch(𝑏,𝑄, 𝐹𝑖); /* 𝑏: the # of threads*/
7. return 𝑄(𝑥𝑜, 𝐹𝑖);

Figure 6: Algorithm PQMatch

For each uncovered node 𝑣, it assigns 𝑁𝑑(𝑣) to a worker
𝑆𝑖 that minimizes estimated size difference ∣𝐹𝑚𝑎𝑥∣ − ∣𝐹𝑚𝑖𝑛∣,
where 𝐹𝑚𝑎𝑥 (resp. 𝐹𝑚𝑖𝑛) is the largest (resp. smallest) frag-

ment if 𝑁𝑑(𝑣) is merged to 𝐹𝑖. Since
∑ ∣𝑁𝑑(𝑣)∣ ≤ 𝐶𝑑 ∗ ∣𝐺∣

𝑛
,

this suffices to make 𝒫𝑑 both complete and 𝑑-preserving.

Example 8: Consider graph 𝐺2 of Fig. 2 and a set 𝑉 ′ =
{𝑣5, . . . , 𝑣9}. Assume a base partition distributes {𝑣5} to
worker 𝑆1, {𝑣7, 𝑣9} to 𝑆2, {𝑣6, 𝑣8} to 𝑆3, respectively. DPar
creates a 1-hop preserving partition 𝒫1 for 𝑉 ′ as follows. (1)
Each 𝑆𝑖 identifies its border nodes 𝐹𝑖.𝑂 by a local traversal,
e.g., 𝑣5 ∈ 𝐹1.𝑂. (2) Each 𝑆𝑖 traverses 𝐺2 at 𝑆𝑐 and finds
𝑁1(𝑣) for 𝑣 ∈ 𝐹𝑖.𝑂, in parallel. At the end, 𝑆𝑐 keeps track
of the nodes (edges) “requested” by workers as follows.

node requested by
𝑥4 𝑆1, 𝑆3

𝑥5, 𝑥6, prof. 𝑆2, 𝑆3

PhD. 𝑆1, 𝑆2, 𝑆3

DPar next determines which site to send the border nodes
by solving an MKP instance, shown as follows.

site 𝑁1(⋅) (estimated) ∣𝐹𝑖∣
𝑆1 𝑁1(𝑣5), 𝑁1(𝑣9) 14 (∣𝑁1(𝑣5)∣ = 6, ∣𝑁1(𝑣9)∣ = 8)
𝑆2 𝑁1(𝑣7) 8
𝑆3 𝑁1(𝑣8) 15

Here 𝑁1(𝑣5) includes three nodes 𝑥4, 𝑣5, PhD, and three
edges (𝑥4, 𝑣5), (𝑣5, PhD) and (𝑥4, PhD); similarly for the
others. This induces a 1-hop preserving partition 𝒫1 that
covers {𝑣5, 𝑣7, 𝑣8, 𝑣9}. To complete 𝒫1, DPar selects 𝑆2 to
load 𝑁1(𝑣6), where ∣𝑁1(𝑣6)∣ = 15. This minimizes the esti-
mated size ∣𝐹𝑚𝑎𝑥∣ − ∣𝐹𝑚𝑖𝑛∣ = 19 − 14 = 5. Here ∣𝐹𝑚𝑎𝑥∣ is
estimated as the sum of ∣𝐹2∣ = 8 and 11 additional nodes
and edges in 𝑁1(𝑣6) that are not “requested” by 𝑆2 (e.g.,
(𝑥4, 𝑣6), (𝑣6, PhD)). The completed 𝒫1 covers 𝑉 ′ with frag-
ment size 14, 19 and 15 for 𝑆1, 𝑆2 and 𝑆3, respectively. □

Parallel algorithm. Using DPar, we next develop algo-
rithm PQMatch. As shown in Fig. 6, PQMatch takes as
input a QGP 𝑄(𝑥𝑜) of radius at most 𝑑, and a graph 𝐺 dis-
tributed across 𝑛 workers by DPar, where fragment 𝐹𝑖 of 𝐺
resides at worker 𝑆𝑖. It works as follows. (1) The coordi-
nator 𝑆𝑐 posts 𝑄(𝑥𝑜) to each worker 𝑆𝑖 (line 2). (2) Each
worker 𝑆𝑖 then invokes a procedure mQMatch to compute lo-
cal matches 𝑄(𝑥𝑜, 𝐹𝑖) (line 7), where mQMatch implements
QMatch using multi-threading (see below). Once verified,
𝑄(𝑥𝑜, 𝐹𝑖) is sent to 𝑆𝑐 (line 6). (3) Once all the workers
have sent their partial matches to 𝑆𝑐, the coordinator com-
putes 𝑄(𝑥𝑜, 𝐺) as the union of all 𝑄(𝑥𝑜, 𝐹𝑖) (lines 3-4).

Procedure mQMatch. Procedure mQMatch is a multi-
threading implementation of PQMatch (Section 4), support-
ing inter-fragment level parallelism. For pattern edge 𝑒 =
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Figure 7: QGARs

(𝑢, 𝑢′) with quantifier 𝜎(𝑒)⊙ 𝑝 and a candidate 𝑣 in 𝐶(𝑢), it
spawns 𝑝 threads to simultaneously verify the top 𝑝 selected
candidates, one for each. Each thread 𝑖 maintains local par-
tial matches (in its local memory). When all the 𝑝 threads
backtrack to 𝑣, the local partial matches are merged, and
the local counter of 𝑢 is updated by aggregating the local
storage of each thread 𝑖 (see Appendix B for more details).

From Lemma 8 and Lemma 9 below, Theorem 7 follows
(see Appendix A for a proof). We remark that 𝐺 is parti-
tioned once by using a 𝑑-hop preserving partition process.
Then for all QGPs with radius within 𝑑, no re-partitioning

is needed. That is, condition
∑ ∣𝑁𝑑(𝑣)∣ ≤ 𝐶𝑑 ∗ ∣𝐺∣

𝑛
is needed

only for 𝑑-hop preserving partition to be parallel scalable.

Lemma 9: Given 𝐺 distributed over 𝑛 processors by a 𝑑-hop
preserving partition 𝒫𝑑, (1) 𝑄(𝑥𝑜, 𝐺) =

∪
𝑖∈[1,𝑛] 𝑄(𝑥𝑜, 𝐹𝑖),

and (2) mQMatch is parallel scalable for all QGPs 𝑄(𝑥𝑜)
with radius bounded by 𝑑. □

Remark. Algorithm PQMatch can be easily adapted to
dynamic query load and graphs. (1) For a query with radius
𝑑′ > 𝑑, each worker 𝑆𝑖 incrementally computes 𝑁𝑑′−𝑑(𝑣) for
each node 𝑣 ∈ 𝐹𝑖.𝑂, via the balanced parallel BFS traversal.
(2) When 𝐺 is updated, coordinator 𝑆𝑐 assigns the changes
(e.g., node/edge insertions and deletions) to each fragment.
Each worker then applies incremental distance querying [15]
to maintain 𝑁𝑑(𝑣) of all affected 𝑣 ∈ 𝐹𝑖.𝑂 for 𝑖 ∈ [1, 𝑛].

6. QUANTIFIED ASSOCIATION RULES
As an application of QGPs, we introduce a set of graph

association rules (QGARs) with counting quantifiers, to iden-
tify regularity between entities in graphs in general, and po-
tential customers in social graphs in particular.

QGARs. A quantified graph association rule 𝑅(𝑥𝑜) is defined
as 𝑄1(𝑥𝑜) ⇒ 𝑄2(𝑥𝑜), where 𝑄1 and 𝑄2 are QGPs, referred
to as the antecedent and consequent of 𝑅, respectively.

The rule states that for all nodes 𝑣𝑥 in a graph 𝐺, if 𝑣𝑥 ∈
𝑄1(𝑥𝑜, 𝐺), then the chances are that 𝑣𝑥 ∈ 𝑄2(𝑥𝑜, 𝐺).
Using QGPs, QGAR 𝑅 can express positive and negative

correlations [40] and social influence patterns with statistical
significance [19], which are useful in targeted advertising.
(1) If 𝑄2 is a positive QGP, 𝑅(𝑥𝑜) states that if 𝑥𝑜 satisfies
the conditions in 𝑄1, then “event”𝑄2 is likely to happen to
𝑥𝑜. For instance, 𝑄2(𝑥𝑜) may be a single edge buy(𝑥𝑜, 𝑦)
indicating that 𝑥𝑜 may buy product 𝑦. In a social graph 𝐺,
𝑅(𝑥𝑜, 𝐺) identifies potential customers 𝑥𝑜 of 𝑦. (2) When
𝑄2 is, e.g., a single negated edge buy(𝑥𝑜, 𝑦), 𝑅(𝑥𝑜) suggests
that no 𝑣𝑥 in 𝑄1(𝑥𝑜, 𝐺) will likely buy product 𝑦.

Example 9: A positive QGAR 𝑅1(𝑥𝑜): 𝑄1(𝑥𝑜) ⇒ buy(𝑥𝑜)
is shown in Fig. 7, where 𝑄1 is the QGP given in Example 1,
and 𝑄2 is a single edge buy(𝑥𝑜) (depicted as a dashed edge).
It states that if 𝑥𝑜 is in a music club and if 80% of people
whom 𝑥𝑜 follows like an album 𝑦, then 𝑥𝑜 will likely buy 𝑦.
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A negative QGAR 𝑅2 is also shown in Fig. 7, where 𝑄2 is
a single negative edge follow(𝑥𝑜, 𝑦). The QGAR states that if
𝑥𝑜 and 𝑦 actively (≥ 𝑘) tweet on competitive products (e.g.,
“Mac” vs “PC”), then 𝑥𝑜 is unlikely to follow 𝑦. Intuitively,
𝑅2 demonstrates “negative” social influence [19].
As another example, 𝑅3 of Fig. 7 is a rule in which 𝑄2 con-

sists of multiple nodes. Here 𝑄1 in 𝑅3 specifies users 𝑥𝑜 who
actively promote mobile phone Redmi 2 and influence other
users; and 𝑄2 predicts the impact of 𝑥𝑜 on other users for
a new release Redmi 2A. Putting these together, 𝑅3 states
that if 𝑥𝑜 is influential over an earlier version, then 𝑥𝑜 is
likely to promote the selling of a new release [4]. Intuitively,
𝑄1 identifies 𝑥𝑜 as “leaders” [19], who are often targeted by
companies for promotion of a product series [4].

To the best of our knowledge, these QGARs are not ex-
pressible as association rules studied so far (e.g., [16, 17]).

QGARs also naturally express conventional association
rules defined on itemsets. For instance, milk, diaper ⇒ beer
is depicted as QGAR 𝑅4(𝑥𝑜) in Fig. 7. It finds customers 𝑥𝑜
who, if buy milk and diaper, are likely to purchase beer. □

For real-world applications (e.g., social recommendation),
we consider practical and nontrivial QGARs by requiring: (a)
𝑄1 and 𝑄2 are connected and nonempty (i.e., each of them
has at least one edge); and (b) 𝑄1 and 𝑄2 do not overlap,
i.e., they do not share a common edge. We treat 𝑅 as a
QGP composed of both 𝑄1 and 𝑄2 such that in a graph 𝐺,

𝑅(𝑥𝑜, 𝐺) = 𝑄1(𝑥𝑜, 𝐺) ∩𝑄2(𝑥𝑜, 𝐺).

Interestingness measure. To identify interesting QGARs,
we define the support and confidence of QGARs.

Support. Given a QGAR 𝑅(𝑥𝑜) and a graph 𝐺, the support
of 𝑅 in 𝐺, denoted as supp(𝑅,𝐺), is the size ∣𝑅(𝑥𝑜, 𝐺)∣, i.e.,
the number of matches in 𝑄1(𝑥𝑜, 𝐺)∩𝑄2(𝑥𝑜, 𝐺). We justify
the support with the result below, which shows its anti-
monotonicity for both pattern topology and quantifiers.

Lemma 10: For any extension 𝑅′ of 𝑅 by (1) adding new
edges (positive or negative) to 𝑄1 or 𝑄2, or (2) increasing
𝑝 in positive quantifiers, ∣supp(𝑅′, 𝐺)∣ ≤ ∣supp(𝑅,𝐺)∣. □

Confidence. We follow the local close world assumption
(LCWA) [14], assuming that graph 𝐺 is locally complete,
i.e., either 𝐺 includes the complete neighbors of a node for
any known edge type, or it has no information about these
neighbors. We define the confidence of 𝑅(𝑥𝑜) in 𝐺 as

conf(𝑅,𝐺) =
∣𝑅(𝑥𝑜, 𝐺)∣

∣𝑄1(𝑥𝑜, 𝐺) ∩𝑋𝑜∣ ,
where 𝑋𝑜 is the set of candidates of 𝑥𝑜 that are associated
with an edge of the same type for every edge 𝑒=(𝑥𝑜, 𝑢) in 𝑄2.
Intuitively, 𝑋𝑜 retains those “true” negative examples under
LCWA, i.e., those that have every required relationship of 𝑥𝑜
in 𝑄2 but are not a match (see Appendix C for justification).

Quantified entity identification. We want to use QGARs
to identify entities of interests that match certain behavior
patterns specified by QGPs. To this end, we define the set
of entities identified by a QGAR 𝑅(𝑥𝑜) in a (social or knowl-
edge) graph 𝐺 with confidence 𝜂 as follows:

𝑅(𝑥𝑜, 𝜂,𝐺) = {𝑣𝑥 ∣ 𝑣𝑥 ∈ 𝑅(𝑥𝑜, 𝐺), conf(𝑅,𝐺) ≥ 𝜂},
i.e., entities identified by 𝑅 if its confidence is above 𝜂.
We study the quantified entity identification (QEI) prob-

lem: Given a QGAR 𝑅(𝑥𝑜), graph 𝐺, and a confidence
threshold 𝜂 > 0, it is to find all the entities in 𝑅(𝑥𝑜, 𝜂,𝐺).

The QEI problem is DP-hard, as it embeds the quantified
matching problem, which is DP-hard (Theorem 1). However,
the (parallel) quantified matching algorithms for QGPs can
be extended to QEI, without incurring substantial extra cost.
Denote as 𝑡(∣𝑄∣, ∣𝐺∣) the cost for quantified matching of QGP
𝑄 in 𝐺. Then we have the following (Appendix A).

Corollary 11: There exist (1) an algorithm to compute
𝑅(𝑥𝑜, 𝜂,𝐺) in 𝑂(𝑡(∣𝑅∣, ∣𝐺∣)) time; and (2) a parallel scalable
algorithm to compute 𝑅(𝑥𝑜, 𝜂, 𝐺) in 𝑂( 𝑡(∣𝑅∣,∣𝐺∣)

𝑛
+ 𝑛) time

with 𝑛 processors, under the condition of Theorem 7. □

7. EXPERIMENTAL STUDY
We conducted three sets of experiments to evaluate (1)

the scalability and (2) parallel scalability of our quantified
matching algorithms, and (3) the effectiveness of QGAR for
identifying correlated entities in large real-world graphs.

Experimental setting. We used two real-life graphs: (a)
Pokec [2], a social network with 1.63 million nodes of 269
different types, and 30.6 million edges of 11 types, such as
follow, like; and (b) YAGO2, an extended knowledge base of
YAGO [39] that consists of 1.99 million nodes of 13 different
types, and 5.65 million links of 36 types.
We also developed a generator to produce synthetic social

graphs 𝐺 = (𝑉,𝐸, 𝐿), controlled by the numbers of nodes
∣𝑉 ∣ (up to 50 million) and edges ∣𝐸∣ (up to 100 million), with
𝐿 drawn from an alphabet ℒ of 30 labels. The generator is
based on GTgraph [7] following the small-world model.

Pattern generator. For real-life graphs we generated QGPs
𝑄 controlled by ∣𝑉𝑄∣ (size of pattern nodes), ∣𝐸𝑄∣ (pattern
edges), 𝑝% (in quantifiers) and ∣𝐸−

𝑄 ∣ (size of negated edges).
(1) We first mined frequent features, including edges and
paths of length up to 3 on each of Pokec and YAGO2. We
selected top 5 most frequent features as “seeds”, and com-
bined them to form the stratified pattern 𝑄𝜋 of ∣𝑉𝑄∣ nodes
and ∣𝐸𝑄∣ edges. (2) For frequent pattern edges 𝑒=(𝑢, 𝑢′), we
assigned a positive quantifier 𝜎(𝑒) ≥ 𝑝%, where 𝑝% is ini-
tialized as 30% unless otherwise specified. This completes
the generation of Π(𝑄). (3) We added ∣𝐸−

𝑄 ∣ negated edges
to Π(𝑄) between randomly selected node pairs (𝑢, 𝑢′), to
complete the construction of 𝑄. For synthetic graphs, we
generated 50 QGPs with labels drawn from ℒ.
We denote by ∣𝑄∣ = (∣𝑉𝑄∣, ∣𝐸𝑄∣, 𝑝𝑎, ∣𝐸−

𝑄 ∣) the size of QGP
𝑄, where 𝑝𝑎 is the average of 𝑝 in all its quantifiers.

Algorithms. We implemented the following, all in Java.

(1) Algorithm QMatch, versus (a) QMatch𝑛, a revision
of QMatch that processes negated edges using DMatch, not
the incremental IncQMatch, and (b) Enum, which adopts
a state-of-the-art subgraph isomorphism algorithm [35] to
enumerate all matches first, and then verify quantifiers.
The algorithm in [35] is verified to outperform conventional
counterparts, e.g., VF2, by 3 orders of magnitude.

(2) Algorithm PQMatch, versus (a) PQMatch𝑠, its single-
thread counterpart, (b) PQMatch𝑛, the parallel version of
QMatch𝑛, and (c) PEnum, a parallel version of Enum, which
first invokes a parallel subgraph listing algorithm [37] to enu-
merate all matches, and then verifies quantifiers. We also
implemented (d) DPar for 𝑑-hop preserving partition.

We deployed the parallel algorithms over 𝑛 processors for
𝑛 ∈ [4, 20]. Each processor has 2.6GHz 4vCPU with 16G
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Figure 8: Performance evaluation

memory, and 128GB SSD storage. Each experiment was
run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Performance of QMatch. We first evaluated the
performance of QMatch versus QMatch𝑛 and Enum. Fixing
∣𝑄∣=(5, 7, 30%, 1), i.e., patterns with 5 nodes and 7 edges, 𝑝𝑎
= 30% and one negative edge, Figure 8(a) reports the perfor-
mance of QMatch over two real-world graphs Pokec (denote
the result as 𝑃𝑜𝑘𝑒𝑐5) and YAGO2, and a larger synthetic
graph 𝐺𝑠 of 50 million nodes and 100 million edges. We find
the following. (1) QMatch outperforms the other algorithms.
It is on average 1.2 and 2.0 times faster than QMatch𝑛 and
Enum over YAGO2, 1.3 and 2.0 times faster over Pokec, and
1.3 and 2.6 times faster over 𝐺𝑠, respectively. This veri-
fies that our optimization strategies effectively reduce the
verification cost. (2) QMatch works reasonably well over
real-world social and knowledge graphs. It takes up to 150
(resp. 116) seconds over Pokec (resp. YAGO2), comparable
to conventional subgraph isomorphism without quantifiers.
Moreover, it takes longer time for larger ∣𝑄∣ (e.g., with size
(6, 8, 30%, 1), the result is denoted as 𝑃𝑜𝑘𝑒𝑐6), as expected.

Exp-2: Scalability of PQMatch. This set of experiments
evaluated the scalability of parallel algorithm PQMatch,
compared to PQMatch𝑛, PQMatch𝑠, and PEnum. In these
experiments, we fixed ∣𝑄∣ = (6, 8, 30%, 1), 𝑑 = 2 for 𝑑-hop
preserving partition and 𝑏 = 4 for the number of threads in
intra-fragment parallelism, unless stated otherwise.

Varying 𝑛 (PQMatch). We varied the number 𝑛 of proces-

sors from 4 to 20. As shown in Fig. 8(b) (resp. Fig. 8(c)) over
Pokec (resp. YAGO2), (1) PQMatch and PQMatch𝑠 scale
well with the increase of processors: for PQMatch, the im-

provement is 2.8 (resp. 3.2) times when 𝑛 increases from 4
to 20; this verifies Theorem 7; (2) PQMatch is 3.8 (resp. 5.8)
times faster than PEnum; and (3) with optimization strate-
gies (incremental evaluation and multi-threads), PQMatch
outperforms PQMatch𝑛 and PQMatch𝑠 by 1.5 (resp. 1.1)
times and 2.8 (resp. 2.3) times, respectively. (4) PQMatch
works reasonably well on large graphs. With 20 processors,
it takes 40.3 (resp. 10.2) seconds on Pokec (resp. YAGO2).

Varying 𝑛 (DPar). We also evaluated the scalability of DPar
for 𝑑-hop preserving partition, with 𝑑 = 2 and 𝑑 = 3.
Here DPar incrementally computed the partition when 𝑑 is
changed from 2 to 3 (see Section 5.1). As shown in Fig-
ures 8(d) and 8(e), (1) DPar scales well with 𝑛: when 𝑑=2,
the improvement is 3.5 (resp. 2.5) times when 𝑛 increases
from 4 to 20 over Pokec (resp. YAGO2). (2) The frag-
ments are well balanced: the “skew” (the ratio of the size
of the smallest fragment to the largest one) is at least 80%
when 𝑛=8, for both Pokec and YAGO2. (3) DPar effectively
updates the partition when 𝑑 is increased.

These justify the parallel scalability of DPar andPQMatch.

Varying ∣𝑄∣. Fixing 𝑝𝑎 = 30%, ∣𝐸−
𝑄 ∣ = 1 and 𝑛 = 8, we

varied (∣𝑉𝑄∣, ∣𝐸𝑄∣) from (4, 6) to (8, 10) (resp. (3, 5) to
(7, 9)) on Pokec (resp. YAGO2). As shown in Figures 8(f)
and 8(g), (1) the larger ∣𝑄∣ is, the longer time is taken by
all the algorithms, as expected. (2) PQMatch works well on
real-life queries. For queries of size (5, 7) (close to real-world
queries), it takes up to 35 (resp. 16.3) seconds over Pokec
(resp. YAGO2). It works better on more sparse YAGO2. (3)
PQMatch outperforms the other algorithms, which is consis-
tent with the results shown in Figures 8(b) and 8(c).
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Figure 9: Real-world QGARs

Varying ∣𝐸−
𝑄 ∣. We also studied the impact of the number of

negated edges. The purpose of this test is to evaluate the
effectiveness of incremental matching strategy IncQMatch.
Fixing 𝑛 = 8, (∣𝑉𝑄∣, ∣𝐸𝑄∣) = (6, 8) and 𝑝𝑎 = 30%, we var-

ied ∣𝐸−
𝑄 ∣ from 0 to 4 by selecting ∣𝐸−

𝑄 ∣ edges 𝑒 and “negat-
ing” them by setting 𝜎(𝑒) = 0. As shown in Figures 8(h)
and 8(i), (1) PQMatch and PQMatch𝑠 are rather indifferent
to the change of ∣𝐸−

𝑄 ∣, which incurs small extra cost due
to their incremental strategy (IncQMatch). (2) In contrast,
PQMatch𝑛 and PEnum are more sensitive to the increment
of ∣𝐸−

𝑄 ∣. Both algorithms, without IncQMatch, always re-

compute the matches of pattern 𝑄+𝑒 for each negated edge
𝑒 ∈ 𝐸−

𝑄 , and hence take more time over larger ∣𝐸−
𝑄 ∣. The

improvement of PQMatch over PQMatch𝑛 and PEnum be-
comes more significant (from 1.1 to 2 times, and 3.1 to 5
times) with larger ∣𝐸−

𝑄 ∣ (from 1 to 4) over Pokec. These
results verify the effectiveness of IncQMatch.

Varying 𝑝𝑎. Fixing 𝑛=8, ∣𝐸−
𝑄 ∣ = 1 and (∣𝑉𝑄∣, ∣𝐸𝑄∣) = (6, 8)

(resp. (5, 7)) for Pokec (resp. YAGO2), we evaluated the
impact of aggregates by varying 𝑝𝑎 from 10% to 90%. As
shown in Figures 8(j) and 8(k), (1) with larger 𝑝𝑎, PQMatch,
PQMatch𝑠 and PQMatch𝑛 take less time, since more candi-
dates are pruned in the verification process. (2) In contrast,
PEnum is indifferent to the change of 𝑝𝑎, since it always enu-
merates all the matches regardless of 𝑝𝑎. This verifies the
effectiveness of the pruning strategies of PQMatch.
Observe that PQMatch is less sensitive than PQMatch𝑛

to 𝑝𝑎. When 𝑝𝑎 is small, the overhead of PQMatch𝑛 in-
curred by the recomputation of 𝑄+𝑒 for negated edges 𝑒
is larger, since a large number of candidates need to be
verified. With larger 𝑝𝑎 (more strict quantifiers), the over-
head reduces due to the effective pruning of candidates by
PQMatch𝑛. This explains the comparable performance of
PQMatch and PQMatch𝑛 when 𝑝𝑎 is large (e.g., 𝑝𝑎=0.9).

Varying ∣𝐺∣. Fixing 𝑛 = 4, we varied ∣𝐺∣ from (10𝑀, 20𝑀)

to (50𝑀, 100𝑀) using synthetic social graphs. As shown in
Fig. 8(l), (1) PQMatch scales well with ∣𝐺∣ and is feasible on
large graphs. It takes 125 seconds when ∣𝐺∣ = (50𝑀, 100𝑀).
(2) PQMatch is 1.5, 2.3 and 4.7 times faster than PQMatch𝑛,
PQMatch𝑠 and PEnum on average, respectively.

Exp-3: Effectiveness of QGAR. We also evaluated the
effectiveness of QGARs. We developed a simple QGAR min-
ing algorithm by extending the algorithm of [16] for mining
graph pattern association rule (GPARs). GPARs are a spe-
cial case of QGARs 𝑄1(𝑥𝑜) ⇒ 𝑄2(𝑥𝑜) that have no quanti-
fiers and restrict 𝑄2 to a single edge. (1) We mined a set
of top GPARs using [16] over Pokec and YAGO2, for confi-
dence threshold 𝜂 = 0.5. For each GPAR 𝑅, we initialized
a QGAR 𝑅′. (2) We extended 𝑄2 in each 𝑅′ by adding fre-
quent edges whenever possible, and by gradually enlarging
𝑝𝑎 for frequent edges by increment 10% (1 for numeric ag-
gregates). We stopped when the confidence of 𝑅′ got below
𝜂. We show three QGARs in Fig. 9, illustrated as follows.

(1) 𝑅5 (Pokec) says that if a user has“long-distance” friends,
i.e., at least two of her friends do not live in the same city
“Presov”where she lives, then the chances are that they share
the hobby of traveling. We found 50 matches in Pokec.

(2) 𝑅6 (Pokec; confidence 0.8) demonstrates a negative pat-
tern: for a user 𝑥𝑜, if more than half of his friends share the
same hobby “PC Games”, and none of them like sports, then
it is likely 𝑥𝑜 does not like sports. 𝑅6 has support 4000.

(3) 𝑅7 (YAGO2; confidence 0.75) states that if a US profes-
sor (a) won at least two academic prizes, and (b) graduated
at least 4 students, then the chances are that at least one of
her/his students is not a US citizen. It discovers scientists
such as Marvin Minsky (Turing Award 1969) and Murray
Gell-Mann (Nobel Prize Physics 1969) from YAGO2. Here
𝑄2 in 𝑅7 has three (dashed) edges, as opposed to GPARs [16].

These QGARs demonstrate quantified correlation between
the entities in social and knowledge graphs, which cannot be
captured by conventional association rules and GPARs [16].

Summary. We find the following. Over real-life graphs,
(1) quantified matching is feasible: PQMatch (with 20 pro-
cessors) and QMatch took 40.3s and 342s on Pokec, and
10.2s and 116s on YAGO2, respectively. (2) Better still,
PQMatch and DPar are parallel scalable: their performance
is improved by 3 times on average with workers increased
from 4 to 20. (3) Our optimization techniques improve the
performance of QMatch and PQMatch by 1.27 and 1.3 times
on average, and 2.2 and 4.5 times over Enum and PEnum,
respectively. (4) QGARs capture behavior patterns that can-
not be expressed with conventional graph patterns.

8. CONCLUSION
We have proposed quantified matching, by extending tra-

ditional graph patterns with counting quantifiers. We have
also studied important issues in connection with quantified
matching, from complexity to algorithms to applications.
The novelty of this work consists in quantified patterns
(QGPs), quantified graph association rules (QGARs), and
algorithms with provable guarantees (e.g., optimal incre-
mental matching and parallel scalable matching). Our
experimental study has verified the effectiveness of QGPs
and the feasibility of quantified matching in real-life graphs.
We will study practical extensions of QGPs to more gen-

eral graph patterns (e.g., bounded simulation with regu-
lar path constraints) and other built-in predicates (<,≤
, ∕=). Another topic concerns QGAR discovery. It calls for
a nontrivial extension of prior pattern mining algorithms
(e.g., [16, 17]) to accurately identify quantifiers.
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association rules in folksonomies. In Data Science and
Classification, pages 261–270. 2006.

[37] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu.
Parallel subgraph listing in a large-scale graph. In
SIGMOD, 2014.

[38] R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. In SIGMOD, 1996.

[39] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[40] X. Wu, C. Zhang, and S. Zhang. Efficient mining of both
positive and negative association rules. TOIS, 22(3), 2004.

Appendix A: Proofs
Proof of Theorem 1
It is easy to see that Theorem 1 follows from Lemmas 2, 3
and 4. Below we verify these lemmas.

Lemma 2: Lower bounds. We first prove the lower bounds
of quantified matching, for positive and negative QGPs.

(1) NP-hardness. The quantified matching for positive QGPs
with numeric aggregates is already NP-hard. This can be
verified by constructing a polynomial time reduction from
subgraph isomorphism (subISO), where a QGP 𝑄 is con-
structed by adding quantifiers 𝛿(𝑒) ≥ 1 for all the edges 𝑒 in
a graph pattern 𝑄′ in an instance of subISO. As subISO
is NP-hard (cf. [33]), so is quantified matching.

(2) DP-hardness. We next prove that quantified matching
for (possibly) negative QGPs is DP-hard by reduction from
Exact-Clique, which is DP-complete (cf. [33]). Given a
graph 𝐺 and a natural number 𝑘, Exact-Clique is to de-
termine whether the largest clique of 𝐺 has size exactly 𝑘.
Given an instance of Exact-Clique, We construct a QGP
𝑄(𝑥𝑜) that consists of a 𝑘-clique 𝑄1, a 𝑘+ 1-clique 𝑄2 such
that 𝑥𝑜 has a unique match 𝑣𝑜 in 𝐺′, there is an edge 𝑒 from
𝑥𝑜 to each node in 𝑞1 with 𝜎(𝑒) ≥ 1, and to a single node 𝑣′

in 𝑄2 via a negated edge. The transformation is obviously
in PTIME. Moreover, the largest clique of 𝐺 has size 𝑘 if and
only if 𝑣𝑜 ∈ 𝑄(𝑥𝑜, 𝐺

′). Therefore, the transformation above
is a reduction. As Exact-Clique is DP-complete, quanti-
fied matching with (possibly) negative QGPs is DP-hard.

Lemma 3: Upper bounds. We next prove the upper bounds
for quantified matching. We first consider positive QGPs 𝑄
with numeric aggregates 𝜎(𝑒)⊙ 𝑝 only (Lemma 3). We then
extend the result to ratio aggregates 𝑝% (Lemma 4).

(1) Given a QGP 𝑄(𝑥𝑜), we construct a traditional graph
pattern 𝑄𝑒(𝑥𝑜) without quantifiers, by (a) stripping off all
quantifiers from 𝑄, and (b) for each edge 𝑒(𝑢, 𝑢′) associ-
ated with 𝜎(𝑒) ⊙ 𝑝, if 𝑝 > 1, we make 𝑝 copies of 𝑢′ in 𝑄𝑒

as children of 𝑢, along with copies of edges from 𝑢′ and so
on. Then one can easily verify the following: (a) for any
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graph 𝐺, 𝑄(𝑥𝑜, 𝐺) = 𝑄𝑒(𝑥𝑜, 𝐺), and (b) the time for con-
structing 𝑄𝑒 and hence ∣𝑄𝑒∣ are both a polynomial in ∣𝑄∣;
this is because on each simple path in 𝑄, there are at most
𝑘 non-existential quantifiers, for a predefined constant 𝑘.
These make a PTIME reduction from quantified matching
with positive numeric aggregates to conventional subgraph
isomorphism. Since the latter is in NP, so is the former.

(2) We next prove that the quantified matching for (possi-
bly) negative QGPs is in DP. Following [33], it suffices to
construct two languages 𝐿1 and 𝐿2, such that a node 𝑣𝑥 is
in 𝑄(𝑥𝑜, 𝐺) if and only if 𝑣𝑥 is in 𝐿1 ∩ 𝐿2.
We consider two languages below:
∘ 𝐿1, the set Π(𝑄)(𝑥𝑜, 𝐺), and
∘ 𝐿2, the set of “yes” instances for a node 𝑣𝑥 that is not
a match of 𝑥𝑜 for

∪
𝑒∈𝐸−

𝑄
(Π(𝑄+)(𝑥𝑜, 𝐺).

One can verify that (1) 𝐿1 ∈ NP, (2) 𝐿2 ∈ coNP, and (3) a
node 𝑣𝑥 is in 𝑄(𝑥,𝐺) if and only if 𝑣𝑥 is in 𝐿1 ∩ 𝐿2, by the
definition of QGPs. Thus quantified matching is in DP.

Lemma 4: Ratio aggregates. Given a QGP 𝑄 that contains

ratio aggregates 𝜎(𝑒) ⊙ 𝑝%, we construct a QGP 𝑄𝑑 and
graph 𝐺𝑑 in PTIME such that 𝑄𝑑 consists of numeric aggre-
gates only, and 𝑄𝑑(𝑥𝑜, 𝐺𝑑) = 𝑄(𝑥𝑜, 𝐺). To simplify the dis-
cussion, we consider w.l.o.g. positive 𝑄. For negated edges 𝑒,
by the definition of 𝑄(𝑥𝑜, 𝐺), 𝑒 is positified in 𝑄+𝑒. Hence,
it suffices to consider positive edges.

(a) We transform 𝐺 to a graph 𝐺𝑑 as follows. For each node
𝑣 with 𝑔 child in 𝐺, we add (1−𝑝%)(𝑑− 𝑔) dummy children
with a label that does not match any pattern node in 𝑄, and
𝑝%(𝑑−𝑔) dummy children that complete a dummy subgraph
𝐺𝑄 at 𝑣 that is isomorphic to 𝑄𝜋 of 𝑄.

(b) We transform 𝑄 to 𝑄𝑑 such that for each edge 𝑒 with
quantifier 𝜎(𝑒)⊙ 𝑝%, we replace 𝑝% with a constant 𝑝% ∗ 𝑑.

One may verify that a node 𝑣𝑥 ∈ 𝒬(𝑥𝑜, 𝐺) if and only if
its 𝐺𝑑-counterpart 𝑣𝑑 ∈ 𝑄𝑑(𝑥𝑑, 𝐺𝑑). Moreover, the trans-
formation is obviously in PTIME. Since quantified matching
for all numeric quantified 𝑄𝑑 is in NP by Lemma 3, so is its
counterpart for QGPs 𝑄 with ratio quantifiers. □

This completes the proof of Theorem 1.

Proof of Lemma 5
To show the correctness of DMatch, first observe that
DMatch always terminates. Indeed, DMatch follows the ver-
ification process of conventional subgraph isomorphism al-
gorithm. The process, in the worst case, enumerates all pos-
sible isomorphism mappings from the stratified pattern 𝑄𝜋

to 𝐺, which are finitely many. Hence DMatch terminates.
We next show that DMatch correctly verifies whether a

candidate 𝑣𝑥 is a match of 𝑥𝑜 in Π(𝑄) via an isomorphism
ℎ0 ∈ Π(𝑄)(𝐺). It suffices to show that (1) ℎ0 is a match in
𝑄𝜋(𝐺), and (2) for each 𝑢 in Π(𝑄) and each edge 𝑒=(𝑢, 𝑢′),
∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣ ⊙ 𝑝 for 𝑓(𝑒) = 𝜎(𝑒)⊙ 𝑝.

(1) When DMatch terminates, for each 𝑢 ∈ Π(𝑄) and every
candidate 𝑣 in 𝐶(𝑢) with 𝑋(𝑢, 𝑣)=true, 𝑣 = ℎ(𝑢) for some
ℎ ∈ 𝑄𝜋(𝐺), guaranteed by the correctness of Match.

(2) For each edge (𝑢, 𝑢′) in Π(𝑄) and a node 𝑣 with
𝑋(𝑢, 𝑣)=true, DMatch correctly verifies the quantifiers
by checking the updated local counter of 𝑣 that keeps
track of the current ∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣. In addition,
DMatch waits until either 𝑣 is determined not a valid match

due to that the upper bound fails the quantifier (by the local
pruning rule, Appendix B), or the lower bound satisfies the
quantifier (in the verification). Hence, 𝑣𝑥 is a match if and
only if 𝑣𝑥 ∈ Π(𝑄)(𝑥𝑜, 𝐺) when DMatch terminates.

For the space complexity, it takes 𝑂(∣𝑉 ∣) space to store the
auxiliary structures for the nodes in 𝐺. During the search,
DMatch keeps, at each level of the search, at most 𝑝𝑚 best
matches to be verified, where 𝑝𝑚 is the largest constant in
quantifiers. Since there are in total ∣Π(𝑄)∣ ≤ ∣𝑄∣ levels of
search, it takes in total 𝑂(𝑝𝑚∣𝑄∣+ ∣𝑉 ∣) space. □

Proof of Proposition 6
We prove Proposition 6 by giving the correctness and com-
plexity analysis of IncQMatch below.

Correctness. Given a QGP Π(𝑄+𝑒), algorithm IncQMatch
correctly computes Π(𝑄+𝑒)(𝑥𝑜, 𝐺) by processing Δ𝐸 one
edge at a time. At any time, the newly formed pattern
𝑄′ contains Π(𝑄) as a subgraph. It is easy to verify that
Π(𝑄)(𝑢,𝐺) ⊆ Π(𝑄+𝑒)(𝑢,𝐺), for any 𝑢 ∈ Π(𝑄). Hence,
IncQMatch only needs to determine the nodes to be removed
from the cached matches/candidates from QMatch.
We next show that IncQMatch removes a node 𝑣 from 𝐶(𝑢)

if and only if it is not a match in Π(𝑄+𝑒)(𝑢,𝐺), for any node
𝑢 in Π(𝑄+𝑒). (1) If 𝑣 is not a match, then either 𝑣 is not
in an isomorphism mapping, or 𝑣 fails the quantifier of at
least one edge (𝑢, 𝑢′). IncQMatch captures both cases by the
isomorphism checking and quantifier verification. Hence it
guarantees to remove all the 𝑣 that are not match. (2) As-
sume by contradiction that IncQMatch removes a node 𝑣 that
is a match. Then either 𝑣 is not a match via isomorphism,
or 𝑣 fails the counter for an edge (𝑢, 𝑢′). Both contradict
the assumption that 𝑣 is a match. Hence, IncQMatch only
removes the nodes that are not matches in Π(𝑄+𝑒)(𝑢,𝐺).

Complexity. During the process, IncQMatch visits and
verifies the following sets of nodes: (1) 𝐶(𝑢), including
the cached matches and candidates of 𝑢 if 𝑢 is not in
Π(𝑄), where 𝑢 is in edge 𝑒 = (𝑢, 𝑢′) or 𝑒=(𝑢′, 𝑢), for each
𝑒 ∈ Δ𝐸; and (2) those nodes reachable from (or can be
reached by) those nodes in (1) via a sequence of cached
matches/candidates including those nodes in (1). The num-
ber of verification hence is bounded by the size of the set
combining (1) and (2), which is in total at most ∣AFF∣. □

Proof of Theorem 7
We prove Theorem 7 by providing the correctness and com-
plexity analysis below for algorithm PQMatch.

Correctness. Given graph 𝐺 distributed over 𝑛 proces-
sors by a 𝑑-hop preserving partition P𝑑, PQMatch computes
𝑄(𝑥𝑜, 𝐺) as

∪
𝑄(𝑥𝑜, 𝐹𝑖) (𝑖 ∈ [1, 𝑛]), for any QGP 𝑄(𝑥𝑜) with

radius bounded by 𝑑. It suffices to show Lemma 9(1).

Lemma 9(1). Observe the following. (1) For any match

𝑣𝑥 ∈ 𝑄(𝑥𝑜, 𝐹𝑖), QMatch only needs to visit 𝑁𝑑(𝑣𝑥) to verify
whether 𝑣𝑥 is a match. (2) For every candidate 𝑣𝑥 ∈ 𝐶(𝑥𝑜),
there exists a fragment 𝐹𝑖, such that 𝑁𝑑(𝑣𝑥) ⊆ 𝐹𝑖 (including
𝑣𝑥) (by 𝑑-hop preservation). Hence, any match of 𝑥𝑜 must be
from at least one match set 𝑄(𝑥𝑜, 𝐹𝑖) evaluated at fragment
𝐹𝑖. (3) For every match 𝑣𝑥 ∈ 𝑄(𝑥𝑜, 𝐹𝑖) locally computed
at 𝐹𝑖, 𝑣𝑥 is a match of 𝑥𝑜 guaranteed by the correctness of
QMatch. Hence PQMatch correctly computes 𝑄(𝑥𝑜, 𝐺) as

∪

𝑄(𝑥𝑜, 𝐹𝑖) (𝑖 ∈ [1, 𝑛]) over a 𝑑-hop preserving partition.
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Complexity. Algorithm PQMatch consists of three steps:
(1) the distribution of 𝑄 and construction of 𝑑-hop preserv-
ing partition, (2) the parallel evaluation, and (3) assembling
of partial matches. The time for step (2) and (3) are in

𝑂( 𝑡(𝑄,𝐺)
𝑛

) and 𝑂(𝑛), respectively, i.e., are parallel scalable.
Hence it suffices to focus on the parallel scalability of step

(1), by proving Lemma 8 and Lemma 9(2).

Lemma 8 (Parallel scalability of DPar). We first show that
procedure DPar is parallel scalable. We will show the ap-
proximation ratio of DPar separately in the next proof.
Observe the following. (1) For each worker 𝑆𝑖 managing

a fragment 𝐹𝑖 in the base partition, the border nodes 𝐹𝑖.𝑂
can be computed via a linear scan of 𝐹𝑖. Hence the overall

time is in 𝑂(∣𝐶𝑑 ∗ ∣𝐺∣
𝑛
∣) by the condition of Lemma 8. (2)

Given 𝑉 ′=
∪

𝐹𝑖.𝑂, DPar applies the (1+𝜖) approximation
algorithm of [13], which computes an assignment in time

𝑂(∣𝑉 ′∣ 1𝜖 ). For 𝜖 small enough for a good approximation, e.g.,
𝜖=1, the time cost is 𝑂(∣𝑉 ′∣). Since ∣𝑉 ′∣=∑𝐹𝑖.𝑂≤∑

𝑁𝑑(𝑣)

(𝑣 ∈ 𝑉 ′), and
∑

𝑁𝑑(𝑣) is bounded by 𝑂(𝐶𝑑 ∗ ∣𝐺∣
𝑛
), the pro-

cess takes time in 𝑂(𝐶𝑑 ∗ ∣𝐺∣
𝑛
)= 𝑂( ∣𝐺∣

𝑛
). (3) For each border

node 𝑣 ∈ 𝐹𝑖.𝑂, each 𝑆𝑖 fetches 𝑁𝑑(𝑣) from 𝐺 in parallel.
In the worst case, each worker takes in total 𝑂(

∑ ∣𝑁𝑑(𝑣)∣)
time for all the border nodes 𝑣 ∈ 𝐹𝑖.𝑂. As the fetch pro-

cess is bounded by 𝑂(𝐶𝑑 ∗ ∣𝐺∣
𝑛
) at each fragment, the overall

parallel partition time is bounded by 𝑂(𝐶𝑑 ∗ ∣𝐺∣
𝑛
)=𝑂( ∣𝐺∣

𝑛
).

Hence, DPar is parallel scalable.

Lemma 9(2) (Parallel scalability of mQMatch). Procedure
mQMatch is conducted locally in parallel at each worker.
From the correctness of Lemma 9(1), each worker only per-
forms local matching without the need to communicate with
others once DPar terminates. Hence, the overall time com-

plexity is 𝑂( 𝑡(𝑄,𝐺)
𝑛

). The time cost for merging the an-
swers is in 𝑂(𝑛) time. Putting these together, PQMatch is

in 𝑂( 𝑡(𝑄,𝐺)
𝑛

)+𝑂(𝑛) time. Lemma 9(2) thus follows, and so
does the parallel scalability of PQMatch. □

Lemma 8 (Approximation). The 𝑑-hop preserving
partition problem at the coordinator 𝑆𝑐 is to find an as-
signment for each 𝑁𝑑(𝑣) to a worker 𝑆𝑖, such that (a)∑ ∣𝑁𝑑(𝑣𝑖)∣ ≤ 𝑐 ∗ ∣𝐺∣

𝑛
for all 𝑁𝑑(𝑣𝑖) assigned to 𝑆𝑖, and (b)

∣𝑉𝑐∣ is maximized, where 𝑉𝑐 refers the nodes covered in 𝑉 ′.
We show that the problem is 1 + 𝜖-approximable, by con-
structing an approximation preserving reduction (APR) [13]
to the multiple knapsack problem (MKP) as follows.
∘ function 𝑓 : (a) for each 𝑣 ∈ 𝑉 ′, construct an item 𝑢𝑖
with value 1 and weight ∣𝑁𝑑(𝑣)∣; and (b) for each worker
𝑆𝑖, construct a bin 𝐵𝑖 with capacity 𝑐 ∗ ∣𝐺∣

𝑛
− ∣𝐹𝑖∣.

∘ function 𝑔: for each item 𝑢𝑖 packed to a bin 𝐵𝑖 in
𝑠(𝐼2), 𝑔 maps 𝑢𝑖 to 𝑣𝑖, and 𝐵𝑖 to 𝑆𝑖.

We next show that the transformation above is an APR.
Indeed, (1) 𝑓 is in PTIME, and (2) for a feasible solution
𝑠(𝐼2), 𝑔(𝑠(𝐼1)) is also a feasible solution, since the pack-
ing does not exceed the capacity constraints in 𝑠(𝐼2) if and
only if the assignment 𝑔(𝑠(𝐼1)) does not exceed the capacity

of each fragment. (3) Assume 𝑠(𝐼2) ≥ 𝑠∗(𝐼2)
1+𝜖

(𝛼=1). One

can verify that ∣𝑠∗(𝐼1)∣= ∣𝑉𝑐∣ (the size of covered nodes)
= ∣𝑔(𝑠∗(𝐼2)∣ (the size of packed items), ∣𝑠(𝐼1)∣ = ∣𝑔(𝑠(𝐼2)∣.
Hence 𝑔(𝑠(𝐼2))=𝑠(𝐼1)≥ 𝑠∗(𝐼2)

1+𝜖
= 𝑔(𝑠∗(𝐼2))

1+𝜖
. Thus, the trans-

formation is an APR. As a result, from [13] it follows that
𝑑-hop preserving partition is 1 + 𝜖 approximable.

Remarks. We use a balanced bound for all fragments. This
guarantees the correctness of the reduction to MKP. The
choice of MKP is to get a balanced fragment bound and
at the same time, to minimize synchronization cost. Our
experimental study shows that this leads to quite balanced
fragments (Exp-2), with minimum communication cost.

Proof of Lemma 10
Assume that 𝑅′(𝑥𝑜): 𝑄′

1(𝑥𝑜) ⇒ 𝑄′
2(𝑥𝑜) is extended from

𝑅(𝑥𝑜): 𝑄1(𝑥𝑜) ⇒ 𝑄2(𝑥𝑜). It suffices to prove that
𝑅′(𝑥𝑜, 𝐺) ⊆ 𝑅(𝑥𝑜, 𝐺) for any 𝐺. Consider two cases below.

(1) If 𝑄′
1 is extended by adding new edge (either posi-

tive or negative) to 𝑄1, then 𝑄′
1(𝑥𝑜, 𝐺) ⊆ 𝑄1(𝑥𝑜, 𝐺) (see

Section 4.2). Hence, 𝑅′(𝑥𝑜, 𝐺)=𝑄′
1(𝑥𝑜, 𝐺)∩𝑄2(𝑥𝑜, 𝐺) ⊆

𝑄1(𝑥𝑜, 𝐺) ∩𝑄2(𝑥𝑜, 𝐺)=𝑅(𝑥𝑜, 𝐺).

(2) Assume that 𝑄′
1 is obtained by increasing 𝑝 in a positive

quantifier of an edge 𝑒=(𝑢, 𝑢′) in 𝑄1. Assume that there
exists a node 𝑣 ∈ 𝑅′(𝑥𝑜, 𝐺) that is not a match in 𝑅(𝑥𝑜, 𝐺).
Then there must exist a positive edge (𝑥𝑜, 𝑢) with quantifier
𝜎(𝑒) ⊙ 𝑝 for which 𝑣 does not have enough matches in its
children. Nevertheless, for any positive quantifier 𝜎(𝑒) ⊙ 𝑝
in 𝑅 and its counterpart 𝜎(𝑒) ⊙ 𝑝′ in 𝑅′, 𝑝′ ≥ 𝑝. As 𝑣 is a
match of 𝑅′(𝑥𝑜, 𝐺), this contradicts the assumption that 𝑣
is in 𝑅(𝑥𝑜, 𝐺). Hence 𝑅′(𝑥𝑜, 𝐺) ⊆ 𝑅(𝑥𝑜, 𝐺).
The same argument applies to the case when 𝑄′

2 is revised
from 𝑄2. Hence Lemma 10 follows. □

Proof of Corollary 11
As a constructive proof, we outline two algorithms for com-
puting 𝑅(𝑥𝑜, 𝜂,𝐺) with the desired complexity as follows.

Sequential quantified entity matching. Given a QGAR 𝑅,
confidence threshold 𝜂 and 𝐺, the first algorithm, de-
noted as garMatch, (1) invokes QMatch to compute
𝑄1(𝑥𝑜, 𝐺) and 𝑄2(𝑥𝑜, 𝐺), respectively; (2) computes
𝑅(𝑥𝑜, 𝐺) = 𝑄1(𝑥𝑜, 𝐺) ∩𝑄2(𝑥𝑜, 𝐺); and (3) verifies whether

conf(𝑅)= ∣𝑅(𝑥𝑜,𝐺)∣
∣𝑄1(𝑥𝑜,𝐺)∩𝑋𝑜∣ ≥ 𝜂. If so, it returns 𝑅(𝑥𝑜, 𝐺).

The correctness and complexity of garMatch follow from
their QMatch counterparts (Lemmas 5 and 6).

Parallel quantified entity matching. We introduce a parallel
algorithm, denoted as dgarMatch, for parallel quantified en-
tity matching. It follows the generic steps of PQMatch. The
only difference is as follows: (a) each worker evaluates two
patterns 𝑄1 and 𝑄2 in parallel, and (b) the coordinator 𝑆𝑐
assembles the results to evaluate the confidence of 𝑅.
Algorithm dgarMatch starts with a set of base partitions.

(1) It constructs a 𝑑-hop preserving partition, where 𝑑 is a
predefined upper bound of the largest radius 𝑄1 and 𝑄2 in
𝑅. (2) Each worker then computes local match 𝑄1(𝑥𝑜, 𝐹𝑖)
and𝑄2(𝑥𝑜, 𝐹𝑖) in parallel. It also computes the local set𝑋𝑜𝑖.
(3) Each worker returns the local matches to the coordinator
𝑆𝑐. Then dgarMatch computes 𝑅(𝑥𝑜, 𝐺) as (

∪
𝑄1(𝑥𝑜, 𝐹𝑖)) ∖

(
∪

𝑄2(𝑥𝑜, 𝐹𝑖)), and computes the confidence conf(𝑅,𝐺) as
∣𝑅(𝑥𝑜,𝐺)∣

∣∪𝑄1(𝑥𝑜,𝐹𝑖)∩
∪
𝑋𝑜𝑖∣ . It next verifies whether conf(𝑅,𝐺) ≥ 𝜂

and if so, returns 𝑅(𝑥𝑜, 𝐺). Otherwise, it returns ∅.
The correctness and complexity of dgarMatch follow from

their PQMatch counterparts. □
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Appendix B: Optimization Techniques
Selection and Pruning Rules (Section 4)
We show that the number of verification in algorithm
QMatch can be further reduced, by applying the following
selection and pruning rules.

(1) [pruning rules]. The pruning rules are applied each
time when DMatch backtracks from a candidate 𝑣′ ∈ 𝑆𝑃 (𝑢

′)
to a match 𝑣 ∈ 𝑆𝑃 (𝑢) for an edge 𝑒=(𝑢, 𝑢′).
(a) local pruning rule: If the dynamically maintained upper

bound 𝑈(𝑣𝑥, 𝑒) of each 𝑣𝑥 ∈ 𝐶(𝑥𝑜) fails the quantifier
of 𝑒 (because of a verified non-match 𝑣′ as its child),
then removes 𝑣 from 𝐶(𝑢) and 𝑆𝑃 (𝑢).

(b) global pruning rule: monitors the size of current candi-
dates 𝐶(𝑢′), excluding those nodes verified to be non-
matches (i.e., 𝑋(𝑢′, 𝑢) = false).

The lemma below justifies these pruning rules.

Lemma 12: Node 𝑥𝑜 in Π(𝑄) has a match only if for every
node 𝑢′ in Π(𝑄), ∣𝐶(𝑢′)∣ ≥ 𝑝𝑚, where 𝑝𝑚=max{𝑝′} for 𝑝′

ranging over 𝑝 in 𝜎(𝑢, 𝑢′) ≥ 𝑝 for all 𝑢′’s parent 𝑢. □

If 𝐶(𝑢′) < 𝑝𝑚 for some pattern node 𝑢′, QMatch termi-
nates and returns the current Π(𝑄)(𝑥𝑜, 𝐺).

(2) [selection rule]. The selection rule is applied each time
when DMatch extends the search to a next level, at a match
𝑣 ∈ 𝑆𝑃 (𝑢) for edge 𝑒=(𝑢, 𝑢′). Denote as 𝑃 (𝑢′) the parent
set of 𝑢′ in 𝐺, the potential of a match 𝑣′ ∈ 𝐶(𝑢′) is

(1 +
∣𝑃 (𝑣′) ∩ 𝐶(𝑢)∣

∣𝐶(𝑢)∣ ) ∗ Σ∀𝑒=(𝑢′,𝑢′′)
𝑈(𝑣′, 𝑒)

𝑝𝑒
The rule picks candidates with highest potential scores.

Example 10: Consider 𝑄4 with 𝑝=3 (Fig. 2) and a revised
𝐺2 (Fig. 2) by changing “UK” to “US”. QMatch terminates
early without verifying all the nodes, in contrast to Match.
As the potential of the candidates 𝑥4, 𝑥5 and 𝑥6 for 𝑥𝑜 are all
1, QMatch starts with e.g., 𝑥5. (1) Following edge 𝑒=(𝑥𝑜, 𝑧),
the potentials of candidates 𝑣8, 𝑣6, 𝑣7 and 𝑣9 are 2∗(1+ 3

3
)=4,

4, 5
3
, and 4

3
, respectively. Hence QMatch selects 𝑣6, 𝑣8 and 𝑣7

as top 3 candidates, starting with 𝑣6. (2) When backtracking
to 𝑣6, QMatch finds 𝑣6 not a match; so it reduces the upper
bound of 𝑥4-𝑥6 for edge 𝑒 by 1. QMatch next backtracks
to 𝑥5. By the local pruning rule, it finds 𝑈(𝑥5, 𝑒) smaller
than 3; thus 𝑣5 is not a match. (3) Applying the global
pruning rule, the size 𝐶(𝑧) ({𝑣7, 𝑣9}) is already smaller than
3. Hence QMatch returns ∅ without further checking. □

Proof of Lemma 12
Proof: We show Lemma 12 by contradiction. Assume that
a node 𝑣𝑥 ∈ 𝐶(𝑥𝑜) is a match of 𝑥𝑜, and there exists a node 𝑢′

in Π(𝑄) that ∣𝐶(𝑢′)∣ < 𝑝𝑚, where 𝑝𝑚 is the largest constant
in the positive quantifier from edges (𝑢, 𝑢′). (1) Since 𝑣𝑥 is a
match of 𝑥𝑜, there exists a node 𝑣′ ∈ 𝐶(𝑢′) that is a match
for 𝑢′. As 𝑣′ is a valid match for 𝑢′, it must have a parent
𝑣 that matches 𝑢 in an isomorphic mapping, and satisfies
the quantifier of edge 𝑒𝑖=(𝑢𝑖, 𝑢

′), for every parent 𝑢𝑖 of 𝑢′.
(2) This indicates that 𝑣′ must have at least 𝑝𝑖 children
that match 𝑢′ with size at least 𝑝𝑖, for 𝑒𝑖 with quantifier
𝜎(𝑒𝑖) ⊙ 𝑝𝑖, i.e., ∣𝐶(𝑢′)∣ ≥ 𝑝𝑖. (3) Since (2) holds for every
edge (𝑢𝑖, 𝑢

′), ∣𝐶(𝑢′)∣ ≥ 𝑝𝑚. This contradicts the assumption
that ∣𝐶(𝑢′)∣ < 𝑝𝑚. Hence Lemma 12 follows. □

Optimization For QMatch (Section 4)
We leverage graph simulation [21] to further reduce verifi-
cation. A node 𝑣 in 𝐺 simulates a query node 𝑢 in 𝑄, i.e.,

(𝑢, 𝑣) is in a simulation relation 𝑅 if 𝑣 and 𝑢 have the same
label, and for each 𝑢’s child 𝑢′ connected via edge 𝑒, 𝑣 has
a child 𝑣′ connected via edge 𝑒′ having the same label of 𝑒
such that (𝑢′, 𝑣′) ∈ 𝑅. It is known that 𝑅 can be computed
in quadratic time [21]. One can verify the following.

Lemma 13: For any edge 𝑒=(𝑢, 𝑢′) in Π(𝑄)(𝑥𝑜) and its
quantifier 𝜎(𝑒)⊙𝑝, 𝑣 is a match of 𝑢 in 𝑄 when 𝑥𝑜 is mapped
to 𝑣𝑥 only if (1) 𝑣𝑥 simulates 𝑥𝑜, (2) 𝑣 simulates 𝑢, and (3)

∣𝑅(𝑣𝑥, 𝑣, 𝐺)∣ (resp. ∣𝑅(𝑣𝑥,𝑣,𝐹𝑖)∣
∣𝑀𝑒(𝑣)∣ )⊙ 𝑝 (resp. 𝑝%). □

Here 𝑅(𝑣𝑥, 𝑣, 𝐺) is the set of children of 𝑣 simulating 𝑢′.
Indeed, one may verify that ∣𝑅(𝑣𝑥, 𝑣, 𝐺)∣ is an upper bound
of ∣𝑀𝑒(ℎ0(𝑥𝑜), ℎ0(𝑢), 𝑄)∣ for positive edges 𝑒. The result
above suggests that we can use simulation as preprocessing,
and remove invalid candidates early by following Lemma 13.

Proof of Lemma 13
One may verify that 𝑣 is a match for 𝑢 via isomorphism only
if 𝑣 can simulate 𝑢. Indeed, If a node 𝑣 cannot simulate 𝑢,
then either 𝑣 /∈ 𝐶(𝑢), or no descendant 𝑢′ of 𝑢 s in 𝐶(𝑢′).
Both indicates that 𝑣 cannot match 𝑢 via an isomorphism.
Assume that 𝑣 is a match of 𝑢 when 𝑣𝑥 is matched with 𝑥𝑜.
(1) If 𝑣𝑥 (resp. 𝑣) does not simulate 𝑥𝑜 (resp. 𝑢), then 𝑣𝑥
(resp. 𝑣) cannot match 𝑥𝑜 (resp. 𝑢) via isomorphism. (2)
If ∣𝑅(𝑣𝑥, 𝑣, 𝐹𝑖)∣ fails the quantifier 𝑒, then the number of
possible matches in 𝑣’s children fails the quantifier. Both
contradict the assumption. Lemma 13 thus follows. □

Multi-thread Quantified Matching (Section 5)
Given 𝑄(𝑥𝑜) and fragment 𝐹𝑖, mQMatch follows QMatch to
verify the candidates in 𝐶(𝑥𝑜). It dynamically spawns 𝑝
threads to simultaneously verify the top 𝑝 selected candi-
dates 𝑣 for each pattern edge 𝑒=(𝑢, 𝑢′), one for each candi-
date. For a candidate 𝑣 ∈ 𝐶(𝑢), the thread 𝑖 for 𝑣 spawns a
thread for each of the top 𝑝 candidates 𝑣′ ∈ 𝐶(𝑢′) to be ver-
ified. As multi-threading can be expensive when 𝑑 is large,
mQMatch utilizes thread blocking to avoid the overhead: (1)
it only spawns at most 𝑏 threads, and “sequentializes” the
rest 𝑝 − 𝑏 verification with a single thread, and (2) it only
spawns threads for the first two search levels.

Appendix C: Confidence of QGARs (Section 6)
One might be tempted to define the confidence of 𝑅(𝑥𝑜) as
∣𝑅(𝑥𝑜,𝐺)∣
∣𝑄1(𝑥𝑜,𝐺)∣ , following traditional association rules [38]. How-
ever, this does not work well in incomplete graphs.

Example 11: For QGAR 𝑅1, consider two matches 𝑣1 and
𝑣2 in𝑄1(𝑥𝑜, 𝐺), where user 𝑣1 has no edge labeled buy. Since
𝐺 is usually incomplete, it is an overkill to assume that 𝑣1 is
a negative example as a potential customer of books, since
some of its buy edges may possibly be missing from 𝐺. □

To accommodate incomplete graphs, we follow the local
close world assumption (LCWA) [14], which assumes that
𝐺 is locally complete, i.e., either 𝐺 includes the complete
neighbors of a node for any existing edge type, or it knows
nothing about the neighbors. We define conf(𝑅,𝐺), the con-

fidence of 𝑅(𝑥𝑜) in 𝐺 under LCWA, as ∣𝑅(𝑥𝑜,𝐺)∣
∣𝑄1(𝑥𝑜,𝐺)∩𝑋𝑜∣ .

Continuing with Example 11, user 𝑣2 is retained in 𝑋𝑜

but 𝑣1 is excluded due to missing buy edges. Hence, 𝑣1 is no
longer considered to be a negative match under LCWA.
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