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Abstract
The need for graph computations is evident in a multitude of use cases. To support

computations on large-scale graphs, several parallel systems have been developed.

However, existing graph systems require users to recast algorithms into new mod-

els, which makes parallel graph computations as a privilege to experienced users only.

Moreover, real world applications often require much more complex graph process-

ing workflows than previously evaluated. In response to these challenges, the thesis

presents GRAPE, a distributed graph computation system, shipped with various appli-

cations for social network analysis, social media marketing and functional dependen-

cies on graphs.

Firstly, the thesis presents the foundation of GRAPE. The principled approach of

GRAPE is based on partial evaluation and incremental computation. Sequential graph

algorithms can be plugged into GRAPE with minor changes, and get parallelized as a

whole. The termination and correctness are guaranteed under a monotonic condition.

Secondly, as an application on GRAPE, the thesis proposes graph-pattern associa-

tion rules (GPARs) for social media marketing. GPARs help users discover regularities

between entities in social graphs and identify potential customers by exploring social

influence. The thesis studies the problem of discovering top-k diversified GPARs and

the problem of identifying potential customers with GPARs. Although both are NP-

hard, parallel scalable algorithms on GRAPE are developed, which guarantee a poly-

nomial speedup over sequential algorithms with the increase of processors.

Thirdly, the thesis proposes quantified graph patterns (QGPs), an extension of

graph patterns by supporting simple counting quantifiers on edges. QGPs naturally ex-

press universal and existential quantification, numeric and ratio aggregates, as well as

negation. The thesis proves that the matching problem of QGPs remains NP-complete

in the absence of negation, and is DP-complete for general QGPs. In addition, the

thesis introduces quantified graph association rules defined with QGPs, to identify po-

tential customers in social media marketing.

Finally, to address the issue of data consistency, the thesis proposes a class of func-

tional dependencies for graphs, referred to as GFDs. GFDs capture both attribute-value

dependencies and topological structures of entities. The satisfiability and implication

problems for GFDs are studied and proved to be coNP-complete and NP-complete,

respectively. The thesis also proves that the validation problem for GFDs is coNP-

complete. The parallel algorithms developed on GRAPE verify that GFDs provide an

effective approach to detecting inconsistencies in knowledge and social graphs.
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Lay Summary

The need for graph computations is evident in transportation network analysis,

knowledge extraction, Web mining, social network analysis and social media market-

ing, among other things. Graph computations are, however, costly in real-life graphs.

For instance, the social graph of Facebook has billions of nodes and trillions of edges.

In such a graph, it is already expensive to compute shortest distances from a single

source, not to mention graph pattern matching, which is intractable in nature.

To support graph computations in large-scale graphs, several parallel systems have

been developed, e.g., Pregel, GraphLab, Giraph++, GraphX. These systems, however,

do not allow us to reuse existing sequential graph algorithms, which have been studied

for decades and are well optimized. To use Pregel, for instance, one has to “think like a

vertex” and recast existing algorithms into a vertex-centric model; similarly when pro-

gramming with other systems, e.g., Blogel, which adopts vertex-centric programming

by treating blocks as vertices. The recasting is nontrivial for people who are not very

familiar with the parallel models. This makes parallel graph computations a privilege

of experienced users only.

Is it possible to make parallel graph computations accessible to users who only

know conventional graph algorithms covered in undergraduate textbooks? Can we

have a system such that given a graph computation problem, we can “plug in” its ex-

isting sequential algorithms as a whole, without recasting or “thinking in parallel”,

and the system automatically parallelizes the computation across multiple processors?

Moreover, can the system guarantee that the parallelization terminates and converges

at correct answers as long as the sequential algorithms plugged in are correct? Further-

more, can the system inherit optimization techniques well developed for sequential

graph algorithms, such as indexing and compression? Better yet, despite the ease of

programming, can the system achieve performance comparable to the state-of-the-art

parallel graph system?

These questions motivate us to develop GRAPE, a parallel GRAPh query Engine.

GRAPE has the unique ability to parallelize existing sequential graph algorithms as a

whole. Sequential graph algorithms can be plugged into GRAPE with minor changes,

and get parallelized. The termination and correctness are guaranteed under a mono-

tonic condition.

As an application on GRAPE, the thesis proposes graph pattern association rules

(GPARs) for social media marketing. GPARs help users discover regularities between
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entities in social graphs and identify potential customers by exploring social influence.

To make the pattern matching on GRAPE more expressive, the thesis also proposes

quantified graph patterns (QGPs), an extension of graph patterns by supporting simple

counting quantifiers on edges while does not introduce extra complexity for its match-

ing problem. Moreover, the thesis introduces quantified graph association rules defined

with QGPs, to identify potential customers in social media marketing.

Finally, to address the issue of data consistency, the thesis proposes a class of func-

tional dependencies for graphs, referred to as GFDs. GFDs capture both attribute-value

dependencies and topological structures of entities. The algorithms on GRAPE verify

that GFDs provide an effective approach to detecting inconsistencies in knowledge and

social graphs.
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Chapter 1

Introduction

With the emergence of big data, the graph model has drawn great attention both in

academia and industry in the past decade. Graphs provide strong modelling for com-

plex applications and rich querying. Graph systems outperform relational database for

the cases that require costly join operations since graph stores and processes connec-

tions as first citizens. In light of these, many systems and frameworks are designed

and developed for graph computations. However, to handle graphs with billions or

even trillions of nodes and edges is non-trivial. Particularly, querying and analytics on

very large graph efficiently is a challenging task.

In this dissertation, we propose a parallel graph computation engine, named GRAPE,

with a variety of applications used in real-life graph data, and study the related prob-

lems. In this chapter, we present the motivations for this thesis, review existing graph

systems, describe the main results of the work and give an outline of this thesis.

1.1 Motivations

Graphs make an important source of big data and have proved to be prevalently used

in social marketing, knowledge discovery, transportation/mobile network analysis, ma-

chine learning, and other disciplines like chemistry and bioinformatics.

The social graph is one of the most important kinds of graph data. Social graphs

depict personal relations of internet users, and other things such as posts, pictures, and

comments. The graph-shape is natural to organise and express the rich information

generated by users and the interactions between them. Analysing and deriving new

insights from the social graphs is attractive to big web companies. They research on a

wide range of use cases, including collaborative filtering to give accurate recommenda-

1



Chapter 1. Introduction 2

tions for users sharing common interests, friends of friends to connect more users and

expand one’s social circle, as well as fraud detection to find deeply hidden criminals

by analysis users’ abnormal interactions.

The knowledge base is another kind of big graph. It uses graphs to store and

manage a massive of complex structured and unstructured information in computer

systems. Data is organised under an ontology schema aimed to support computa-

tional tasks. Many knowledge base projects are established, e.g., DBpedia [dbp], Free-

base [fre], and Yagos [SKW07]. In knowledge bases, information is extracted as RDF

triples and added as properties of the corresponding URI. The knowledge base is fun-

damental to the semantic web and the Internet of things. It helps computers retrieve

and understand semantic information in specific domains. For instance, Google uses a

knowledge graph to enhance its search results by gathering information from a variety

of sources about a topic [goo].

No matter where the graphs come from, on the abstract level, graphs could be

represented as a set of vertices and a set of edges. The vertices usually represent

the entities, while the edges represent the relationships. These analytics, explorations,

searches and computations on the graph could be unified and termed queries on graphs.

We formalise the problem: Consider a class Q of graph queries, such as graph connec-

tivity, (weak or strong connected component), graph traversal, (breadth-first search or

depth-first search), graph pattern matching (via graph simulation or subgraph isomor-

phism) and graph search. Given a query Q ∈ Q and a data graph G, the problem of

querying graphs is to compute the answer Q(G) to Q in G.

There are several parallel graph systems developed for solving graph query, e.g.,

GraphLab [LGK+10], Giraph [Ave11], Giraph++ [TBC+13], GraphX [GXD+14],

Blogel [YCLN14] and Trinity [SWL12]. Although they enjoy great popularity in

the industry and the community, some issues are recognised, e.g., the inefficiency IO

cost for MapReduce, excessive message passing and lack of global optimisation in the

vertex-centric systems, and the need to rewrite existing algorithms in the new model.

We can bear these, but graph computations have been studied for decades, and many

sequential algorithms already exist. Can we reuse them in the parallel setting with mi-

nor revision and guarantee the termination and correctness, without drastic degradation

in performance or functionality compared with other parallel graph systems?

Moreover, there are some well-known graph computations such as reachability

query, page rank and triangle counting. However, with the rich profile information

in the social network, one may want to evaluate some more complex queries beyond
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these.

One of the applications is association rules considering the social relationships.

The need for studying associations between entities in social graphs is evident, espe-

cially in social media marketing. Social media marketing is predicted to trump tradi-

tional marketing. Indeed, “Consumers are 92% more likely to trust their peers over

advertising when it comes to purchasing decisions” [Lit], “60% of users said Twitter

plays an important role in their shopping” [Smi13], and “the peer influence from ones

friends causes more than 50% increases in odds of buying products” [BU12]. Can we

provide an application based on GRAPE to identify potential customers with the help

of association rules on the social graph data?

Inspecting the associations in social networks raises another problem. Associations

in the real world are usually too complicated to be expressed in a single graph pattern.

More expressive patterns are needed, notably ones with counting quantifiers. However,

adding counting quantifiers to graph patterns poses several questions: How to define

the quantified graph pattern, to strike a balance between expressive power and com-

plexity? Can we efficiently conduct graph pattern matchings with quantifiers? How to

employ these expressive patterns in the emerging applications?

Another issue of real life graphs is data quality. It is widely recognised that real-

life data is dirty: “more than 25% of critical data in the worlds top companies is

flawed” [dat] and dirty data may lead to strategical mistakes. For relational data, a

variety of dependencies have been studied, such as conditional functional dependen-

cies (CFDs) [FGJK08] and denial constraints [BCD03]. Employing the dependencies,

a batch of techniques have been developed to detect errors in relational data and re-

pair the data. However, the study on dependencies on graphs is still in its infancy.

There lacks a comprehensive study on the quality on graphs while it is indeed needed.

For instance, to build a knowledge base with high quality, effective methods must be

developed to catch the inconsistencies.

In summary, real-life scale graphs introduce new challenges to query evaluation,

data mining and data cleaning, among other things. They demand a departure from

theory to systems and applications and call for new techniques to query big graphs,

identify associations among entities and improve data quality. In this thesis, we aim

to (1) propose a parallel graph system with new query evaluation approaches (2) study

its application for identifying association rules with graphs (3) extend graph pattern

matching to make it more expressive in social marketing, and (4) study the data con-

sistency problem on graphs.
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1.2 Graph Systems: State of The Art

GraphLab and PowerGraph. In 2010, CMU revealed GraphLab [LGK+10], which

is designed to target the general Machine Learning (ML) problems. By inspecting

the common patterns in ML problems, the authors found that the different conver-

gence speed between vertexes limits the parallel performance. Based on this, they pro-

posed an asynchronised execution model for iterative graph computation. GraphLab

is the one that gives the concept of vertex-centric computation, which leads to a fine-

grained graph algorithm expression, and has been inherited in many subsequent sys-

tems. GraphLab also offers a set of elaborately designed concurrency control models

to ensure the consistency in the asynchronised model.

GraphLab has attracted significant interest, both in academia and industry. As a

consequence, the research team has extended it to focus on large power-law graphs

in distributed settings: specifically, PowerGraph [GLG+12]. In the PowerGraph ab-

straction, a vertex programme could read states from its neighbours directly to archive

shared memory illusion. PowerGraph also introduces a Gather-Apply-Scatter model

to decompose the vertex programme into three phases: In the gather phase, a vertex

access states from its neighbours with incoming edges aggregate them; In the apply

phase, the vertex program applied the aggregated messages and processed the compu-

tation logic; during the last scatter phase, the computation result is scatted along its

outgoing edges.

PowerGraph is designed to process large scale graph from the real world. One ob-

servation is that some particular vertices are converging slowly due to their extremely

high degree. PowerGraph introduced a new partitioning model name vertex-cut to ad-

dress this issue. Different from edge-cut, vertex-cut split and mirror vertices rather

than edges. By cutting a small fraction of the very high degree vertices, users of Pow-

erGraph can quickly shatter a graph and achieve a good performance.

Many systems are following the principle or implementation of GraphLab. These

systems include GraphChi [KBG12], a single-machine fitted graph processing system

with a particular access design; PowerLyra [CSCC15], which is based on GraphLab

but supports hybrid-cut of partitioning strategy; and PowerSwitch [XCG+15], supports

fast and seamless switches between sync and async modes by dynamically estimating

the cost.

Pregel and Giraph. Google has revealed its MapReduce [DG08] and Google File Sys-

tem [GGL03] computing abstractions, which have proved to be a good practice for big
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data. So was Pregel [MAB+10]. Pregel is a distributed graph processing system pro-

posed by Google. Programmes on a graph are divided into a sequence of iterations, in

which a vertex sends or receives messages, processes them and changes its status. The

computation terminates when each of the vertices have voted to halt.

Pregel is designed for efficient, scalable and fault-tolerant implementations on clus-

ters. It runs in a Bulk Synchronous Parallel(BSP) [Val90] model, which synchronises

the status of vertices between each iteration and has made the reasoning of algorithms

easier than Graphlab.

The vertex-centric approach is working here. Based on the success of MapRecude,

users are invited to focus on a local action, rather than thinking in a whole scope.

Pregel takes the responsibility for processing the independent actions on each vertex

to lift a whole computation.

Google has claimed that Pregel is used in many products. However, Google did

not make it open-source. Apache Giraph [Ave11] is a community implementation of

Pregel. Besides Pregel, Giraph also incorporates several other features such as master

computation and out-of-core computation. With a steady and active community, Gi-

raph is used by many network companies. For example, Facebook has claimed that it

uses Giraph to process social relationships at a scale of trillion edges [CEK+15]. To

the best of our knowledge, this is the largest size reported in a real application of graph

computation. Facebook explains that Giraph is their first choice to for processing big

data, since its Java implementation and based on MapReduce, which is in the pipeline

of the existing Hadoop infrastructure widely used in the company.

Neo4j. Focusing on the graph data storage and management, Neo4j is an open-source

No-SQL graph database implemented in Java and Scala. [Mil13] It provides full char-

acteristics of databases such as ACID transaction compliance, cluster support and run-

time failover. It models the data as a property graph, which contains connected entities

with various attributes and can be labelled as different roles in a domain. Neo4j shipped

with a declarative language, Cypher. Cypher allows users to state what they want to

select, update, delete and insert in the graph without being required to describe how

to do this. Neo4j has a rich ecosystem with connectors to other big data analytical

frameworks, such as Apache Spark, Docker and Cassandra. These connectors support

exporting of selected graph data to analytics platforms and writing back to the Neo4j

as persistent data, which makes it a full-fledged system.

Blogel and Giraph++. While the vertex-centric framework introduces straightforward
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programming logic, it is easy to observe the overheads of communication and the lim-

itations on random access for the vertices. Some systems extend the vertex-centric

model and adopt a block based model. These include Blogel and Giraph++. They par-

tition vertices into multiple disjoint subgraphs. Within each subgraph, the vertex data

propagation can bypass the network interface and access the memory to improve the

performance.

Giraph++ [TBC+13] is claimed to be a new graph-centric model, and is imple-

mented based on Giraph. To overcome the limitations of the slow propagation and

short-sightedness for the neighbourhood in the vertex-centric model, it opens the par-

tition structure to the users and allows messages within a fragment to flow freely.

Blogel [YCLN14] is another block-centric graph system. The authors proposed a

model aggregating vertices in the same connected component into large vertex, namely

block, to resolve the large diameter and high-density problems in real-world graphs.

Blogel supports three types of computing modes: the vertex mode, block mode and

vertex-block mix mode. An application can select from these modes for its computing

phrases. In some graphs, Blogel achieves orders of magnitude performance improve-

ments over other vertex-centric systems.

Other graph systems There are several other graph systems designed to solve graph

computations from different perspectives. Microsoft Trinity [SWL12] provides fast

random data access by employing a memory cloud and providing a unified address

space. Users explore graphs through Trinity API as if the data is stored in the mem-

ory of a single machine. The detail storage and partition management is transparent

for users. GraphX [XGFS13] is a graph processing component in Apache Spark. It

introduces some small dataflow operators to materialise graph views and express ex-

isting graph APIs. By recasting graph-specific optimisations as general-purpose data

storage optimisations and query evaluation optimisations, it benefits from the existing

techniques which have been studied for decades in the database community.
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1.3 Outline of Thesis

The remainder of the thesis is organised as follows.

Chapter 2 proposes the framework and design of GRAPE. It introduces the princi-

pled approach of GRAPE, which is based on partial evaluation and incremental eval-

uations. It studies the correctness and termination problems. In addition, it gives the

programming interfaces and some details in the implementation.

Chapter 3 presents an application on GRAPE, namely association rules with graph

patterns. Top-k diversified discovery problem and potential customer identify problem

are studied.

Chapter 4 revisits the graph pattern matching, and formally defines graph pattern

matching with quantifiers. It also discusses the complexity of quantified graph match-

ing. Parallel scalable algorithms for efficiently identifying potential customers are

developed and verified.

Chapter 5 introduces a class of functional dependencies for graphs. It gives for-

mal definition and discusses satisfiability and implication problems. Algorithms for

catching violations on GRAPE with parallel scalability are developed and verified in

experiments.

Chapter 6 concludes this thesis.

1.4 Contributions

We summarise the contributions of this work as follows:

Contributions of Chapter 2. We propose GRAPE, from foundation to implementa-

tion, to parallelize sequential graph algorithms.

(1) We introduce the parallel model of GRAPE, by combining partial and (bounded)

incremental evaluation (Section 2.2). We also present the programming model of

GRAPE. We show how to plug in existing sequential algorithms for GRAPE to par-

allelize the entire algorithms, in contrast to parallelization of instructions or opera-

tors [RMM15, MMS14].

(2) We prove two fundamental results (Section 2.3): (a) Assurance Theorem guarantees

GRAPE to terminate with correct answers under a monotonic condition when its input

sequential algorithms are correct; and (b) Simulation Theorem shows that MapRe-

duce [DG08], BSP (Bulk Synchronous Parallel) [Val90] and PRAM (Parallel Random
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Access Machine) [Val91] can be optimally simulated by GRAPE. Hence algorithms

for existing graph systems can be migrated to GRAPE.

(3) We show that a variety of graph computations can be readily parallelized in GRAPE

(Section 2.4). These include graph traversal (shortest path queries SSSP), pattern

matching (via graph simulation Sim and subgraph isomorphism SubIso), connected

components (CC), and collaborative filtering (CF in machine learning). We show how

GRAPE easily parallelizes their sequential algorithms with minor revisions.

(4) We outline an implementation of GRAPE (Section 2.5). We show how GRAPE

supports parallelization, message passing, fault tolerance and consistency. We also

show how easily GRAPE implements optimization such as indexing, compression and

dynamic grouping, which are not supported by the state-of-the-art vertex-centric and

block-centric systems.

(5) We experimentally evaluate GRAPE (Section 2.6), compared with (a) Giraph, a

open-source version of Pregel, (b) GraphLab, an asynchronous vertex-centric system,

and (c) Blogel, the fastest block-centric system we are aware of. Over real-life graphs,

we find that in addition to the ease of programming, GRAPE achieves comparable

performance to the state-of-the-art systems.

Contributions of chapter 3. We propose GPARs, and provide effective algorithms

for discovering and applying GPARs.

(1) We introduce graph-pattern association rules (GPARs) for social media marketing

(Section 3.1). GPARs differ from conventional rules for itemsets in both syntax and se-

mantics. A GPAR defines its antecedent as a graph pattern, which specifies associations

between entities in a social graph, and explores social links, influence and recommen-

dations. It enforces conditions via both value bindings and topological constraints by

subgraph isomorphism.

(2) We define topological support and confidence metrics for GPARs (Section 3.2).

Conventional support for itemsets is no longer anti-monotonic for GPARs. We de-

fine support in terms of distinct “potential customers” by revising a measure proposed

by [BN08]. We propose a confidence measure for GPARs by revising Bayes Fac-

tor [LTP07] to incorporate the local closed world assumption [GTHS13, Don14]. This

allows us to cope with (incomplete) social graphs, and to identify interesting GPARs
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with correlated antecedent and consequent.

(3) We study a new mining problem, referred to as the diversified mining problem and

denoted by DMP. It is a bi-criteria optimization problem to discover top-k GPARs.

While useful, DMP is NP-hard. Nonetheless, we develop a parallel approximation

algorithm with a constant accuracy bound. We also provide optimization methods to

filter redundant or non-promising rules as early as possible.

(4) We also study how to identify potential customers by applying GPARs, referred to

as the entity identification problem and denoted by EIP. Given a social graph G and a

set Σ of GPARs pertaining to an event p(x,y), we identify potential customers x of y in

G with confidence above a given bound η, by using GPARs in Σ. We show that it is

NP-hard even to decide whether such x exists.

Despite this, we develop a parallel scalable algorithm for EIP such that its response

time is in O(t(|G|, |Σ|)/n), a polynomial reduction in the running time t(|G|, |Σ|) of

sequential algorithms, by using n processors. Hence given a big graph, we can identify

potential customers in it by increasing n.

(5) Using real-life and synthetic graphs, we experimentally verify the scalability and

effectiveness of our algorithms (Section 3.5). We show that, despite their complexity,

applying and discovering GPARs are feasible in practice via parallelization.

Contributions of Chapter 4. We extend graph pattern matching with quantifiers.

(1) We propose QGPs (Section 4.1). Using simple counting quantifiers, QGPs uni-

formly support numeric and ratio aggregates, universal and existential quantification,

and negation. We formalize quantified matching, i.e., graph pattern matching with

QGPs, by revising the traditional semantics of pattern matching to incorporate count-

ing quantifiers.

(2) We establish the complexity of quantified matching (Section 4.2). We show that

despite their increased expressiveness, QGPs do not make our lives much harder: quan-

tified matching is NP-complete in the absence of negation, the same as subgraph iso-

morphism; and it is DP-complete otherwise.

(3) We provide a quantified matching algorithm (Section 4.3). The algorithm unifies

conventional pattern matching and quantifier verification in a generic search process,

and handles negation by novel incremental evaluation IncQMatch. As opposed to con-
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ventional incremental settings, IncQMatch acts in response to changes in patterns, not

in graphs, and is optimal by performing only necessary verification.

(4) We develop parallel algorithms for quantified matching (Section 4.4). We identify

a practical condition under which quantified matching is parallel scalable, i.e., guar-

anteeing provable reduction in sequential running time with the increase of processors.

Under the condition, we develop graph partition and QGP matching algorithms, both

parallel scalable, by exploring inter and intra-fragment parallelism.

(5) As an application of QGPs, we introduce quantified graph association rules (QGARs;

Section 4.5). QGARs help us identify potential customers in social graphs, and (pos-

itive and negative) correlations in knowledge graphs. We propose support and confi-

dence metrics for QGARs, a departure from their conventional counterparts. We also

show that the (parallel) quantified matching algorithms can be readily extended to iden-

tify interesting entities with QGARs.

(6) Using real-life and synthetic graphs, we experimentally verify the effectiveness

of QGPs and the scalability of our algorithms (Section 4.6). We find that quantified

matching is feasible and parallel scalable. And QGARs are able to capture behaviour

patterns in social and knowledge graphs that cannot be expressed with conventional

graph patterns.

Contributions of Chapter 5. We study functional dependencies for graphs, from

their fundamental problems to applications.

(1) We propose a class of functional dependencies for graphs, referred to as GFDs

(Section 5.2). As opposed to relational FDs, a GFD specifies two constraints: (a) a

topological constraint in terms of a graph pattern (Section 5.1), to identify entities

on which the dependency is defined, and (b) an extension of CFDs to specify the de-

pendencies of the attribute values of the entities. We show that GFDs subsume FDs

and CFDs as special cases, and capture inconsistencies between attributes of the same

entity and across different entities.

(2) We settle two classical problems for reasoning about GFDs. For a set Σ of GFDs, we

study (a) its satisfiability, to decide whether there exists a non-empty graph that satisfies

all the GFDs in Σ, and (b) its implication, to decide whether a GFD is entailed by Σ. We

show that the satisfiability and implication problems for GFDs are coNP-complete and
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NP-complete, respectively. The results tell us that reasoning about GFDs is no harder

than their relational counterparts such as CFDs, which are also intractable [FGJK08].

(3) As one of applications of GFDs, we study the validation problem, to detect errors

in graphs by using GFDs as data quality rules (Section 5.4). We show that it is coNP-

complete to decide whether a graph contains no violation of a set of GFDs. Despite the

intractability, we develop algorithms that are parallel scalable, i.e., they guarantee to

take less time when more processors are used. They are 2-approximation algorithms

for a bi-criteria optimization problem, to balance workload and minimize communica-

tion costs (Section 5.4). These make it feasible to detect errors in large-scale graphs.

(4) Using real-life and synthetic graphs, we experimentally verify the effectiveness

and efficiency of our GFD techniques (Section 5.6). We find that the inconsistency

detection with GFDs is feasible in real-life graphs. And GFDs catch a variety of incon-

sistencies in real-life graphs, validating the need for combining topological constraints

and value dependencies.

1.5 Publication List

During the course of the PhD study, as a co-author, I have published the following

publications as a co-author that are relevant to this thesis.

• [FXW+17a] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang.

GRAPE: Parallelizing Sequential Graph Computations. In the 43rd Proceed-

ings of the VLDB Endowment (PVLDB), Demo, 2017. The Best Demo Award

recipient.

• [FXW+17b] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang,

Zeyu Zheng, Bohan Zhang, Yang Cao, Chao Tian. Parallelizing Sequential

Graph Computations. ACM SIG Conference on Management of Data (SIG-

MOD), 2017. The Best Paper Award recipient.

• [FWX16b] Wenfei Fan, Yinghui Wu, Jingbo Xu. Functional Dependencies for

Graphs. ACM SIG Conference on Management of Data (SIGMOD), 2016.

• [FWX16a] Wenfei Fan, Yinghui Wu, Jingbo Xu. Adding Counting Quantifiers

to Graph Patterns. ACM SIG Conference on Management of Data (SIGMOD),

2016.
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• [FWWX15] Wenfei Fan, Xin Wang, Yinghui Wu, Jingbo Xu. Association Rules

with Graph Patterns. In the 41st Proceedings of the VLDB Endowment (PVLDB),

2015.

Remark. It is worth mentioning that the (partial) results of this thesis appeared in the

above publications: (1) The results in Chapter 2 appeared in SIGMOD 2017 [FXW+17b],

I took part in the design of the framework and algorithms, implemented the frame-

work and conducted the experiments. (2) The results in Chapter 3 appeared in VLDB

2015 [FWWX15], I jointly developed the discovery algorithms, refined the model,

and carried out the experiments. (3) The results in Chapter 4 are taken from SIG-

MOD 2016 [FWX16a], I participated in the development of quantified patterns and

the quantified matching algorithms, and conducted the experiments. (4) The results in

Chapter 5 have been previously published in SIGMOD 2016 [FWX16b]. I was one

of the developers of the algorithms under the two graph models, and experimentally

verified their efficiency and effectiveness of the algorithms.



Chapter 2

Framework and Foundation of GRAPE

We have witnessed several graph systems emerging in the recent years, which attracted

considerable interest in the large network companies. However, these systems required

users to recast the existing algorithms into new models, which is often too restrictive

for users who may not qualify algorithm design. This suggests a new approach to

design the distributed graph computation system.

In this chapter, we propose the prototype of GRAPE. Based on the partial evalu-

ation and incremental evaluation, we show that sequential algorithms could be easily

plugged into GRAPE with minor changes and get parallelized. We also study the cor-

rectness conditions and simulation theorems of GRAPE. At last, we give an outline of

the implementation and experimentally verify that the parallelized sequential algorithm

could achieve comparable performance without substantial degradation.

13
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Several parallel graph systems have been developed for graph computations, e.g.,

Pregel [MAB+10], GraphLab [LBG+12], Giraph++ [TBC+13] and Blogel [YCLN14].

These systems, however, require users to recast graph algorithms into their models.

While graphs have been studied for decades and a number of sequential algorithms are

already in place, to use Pregel, for instance, one has to “think like a vertex” and recast

the existing algorithms into a vertex-centric model; similarly when programming with

other systems. The recasting is non-trivial for people who are not very familiar with

the parallel models. This makes these systems a privilege for experienced users only.

Is it possible to have a system such that we can “plug” sequential graph algorithms

into it as a whole (subject to minor changes), and it parallelizes the computation across

multiple processors, without drastic degradation in performance or functionality of

existing systems?

To answer this question, we develop GRAPE, a parallel GRAPh Engine, for graph

computations such as traversal, pattern matching, connectivity and collaborative filter-

ing. It differs from prior graph systems in the following.

(1) Ease of programming. GRAPE supports a simple programming model. For a class

Q of graph queries, users only need to provide three existing sequential (incremental)

algorithms for Q with minor additions. There is no need to revise the logic of the

existing algorithms, and it substantially reduces the efforts to “think in parallel”. This

makes parallel graph computations accessible to users who know conventional graph

algorithms covered in undergraduate textbooks.

(2) Semi-automated parallelization. GRAPE parallelizes the sequential algorithms based

on a combination of partial evaluation and incremental computation. It guarantees to

terminate with correct answers under a monotonic condition, if the three sequential

algorithms provided are correct.

(3) Graph-level optimization. GRAPE inherits all optimization strategies available for

sequential algorithms and graphs, e.g., indexing, compression and partitioning. These

strategies are hard to implement for vertex programs.

(4) Scale-up. The ease of programming does not imply performance degradation.

GRAPE could be easily scale up to hundreds of processors, which is total transpar-

ent to users.

We present its underlying principles in the following sections.
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2.1 Preliminaries

We first review the basic notations.

Graphs. We consider graphs G = (V,E,L), directed or undirected, where (1) V is a

finite set of nodes; (2) E ⊆ V ×V is a set of edges; (3) each node v in V (resp. edge

e ∈ E) carries L(v) (resp. L(e)), indicating its content, as found in social networks,

knowledge bases and property graphs.

Graph G′ = (V ′,E ′,L′) is called a subgraph of G if V ′ ⊆ V , E ′ ⊆ E, and for each

node v ∈V ′ (resp. each edge e ∈ E ′), L′(v) = L(v) (resp. L′(e) = L(e)).

Subgraph G′ is said to be induced by V ′ if E ′ consists of all the edges in G whose

endpoints are both in V ′.

Partition strategy. Given a number m, a strategy P partitions graph G into fragments

F = (F1, . . . ,Fm) such that each Fi = (Vi,Ei,Li) is a subgraph of G, E =
⋃

i∈[1,m]Ei,

V =
⋃

i∈[1,m]Vi, and Fi resides at processor Pi. Denote by

• Fi.I the set of nodes v∈Vi such that there is an edge (v′,v) incoming from a node

v′ in Fj (i 6= j);

• Fi.O the set of nodes v′ such that there exists an edge (v,v′) in E, v ∈Vi and v′ is

in some Fj (i 6= j); and

• F .O =
⋃

i∈[1,m]Fi.O, F .I =
⋃

i∈[1,m]Fi.I; F .O = F .I.

The fragmentation graph GP of G via P is an index such that given each node v in

F .O (or F .I), GP(v) retrieves a set of (i 7→ j) if v ∈ Fi.O and v ∈ Fj.I with i 6= j. As

will be seen shortly, GP helps us deduce the directions of messages.

The notations of this chapter are summarized in Table 2.1.
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Symbols Notations

Q , Q a class of graph queries, query Q ∈ Q
G graph, directed or undirected

P0, Pi P0: coordinator; Pi: workers (i ∈ [1,n])

P graph partition strategy

GP the fragmentation graph of G via P

F fragmentation (F1, . . . ,Fn)

Mi messages designated to worker Pi

Table 2.1: Notations in Chapter 2
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2.2 Programming with GRAPE

We start with the parallel model of GRAPE, and then show how to program with

GRAPE. Following BSP [Val90], GRAPE employs a coordinator P0 and a set of m

workers P1, . . . ,Pm.

2.2.1 The Parallel Model of GRAPE

GRAPE supports data-partitioned parallelism. Given a partition strategy P and sequen-

tial PEval, IncEval and Assemble for a class Q of graph queries, GRAPE parallelizes

the computations as follows. It first partitions G into (F1, . . . ,Fm) with P, and dis-

tributes Fi’s across m shared-nothing virtual workers (P1, . . . ,Pm). It maps m virtual

workers to n physical workers. When n < m, multiple virtual workers mapped to the

same worker share memory. It also constructs fragmentation graph GP. Note that G is

partitioned once for all queries Q ∈ Q posed on G.

master P0

!
Q(F1) Q(Fm)

PEval

!
Q(F1 ⊕M1) Q(Fm⊕Mm)

master P0

worker worker

workerworker

master P0

IncEval

Assemble

Q(G)

query Q

Figure 2.1: GRAPE workflow

Parallel model. Given Q ∈ Q , GRAPE computes Q(G) in the partitioned G as shown

in Fig. 2.1. Upon receiving Q at coordinator P0, GRAPE posts the same Q to all the

workers. It adopts synchronous message passing following BSP [Val90]. Its parallel

computation consists of three phases.
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(1) Partial evaluation (PEval). In the first superstep, upon receiving Q, each worker Pi

computes partial results Q(Fi) locally at Fi using PEval, in parallel (i ∈ [1,m]). It also

identifies and initializes a set of update parameters for each Fi that records the status

of its border nodes. At the end of the process, it generates a message from the update

parameters at each Pi and sends it to coordinator P0 (see Section 2.2.2).

(2) Incremental computation (IncEval). GRAPE iterates the following supersteps until

it terminates. Each superstep has two steps, one at P0 and the other at the workers.

(2.a) Coordinator. Coordinator P0 checks whether for all i ∈ [1,m], Pi is inactive,

i.e., Pi is done with its local computation and there is no pending message designated

for Pi. If so, GRAPE invokes Assemble and terminates (see below). Otherwise, P0

routes messages from the last superstep to workers (Section 2.2.2), and triggers the

next superstep.

(2.b) Workers. Upon receiving message Mi, worker Pi incrementally computes Q(Fi⊕
Mi) with IncEval, by treating Mi as updates, in parallel for all i∈ [1,m]. It automatically

finds the changes to the update parameters in each Fi, and sends the changes as a

message to P0 (see Section 2.2.3).

GRAPE supports data-partitioned parallelism by partial evaluation on local frag-

ments, in parallel by all workers. Its incremental step (2.b) speeds up iterative graph

computations by reusing the partial results from the last superstep.

(3) Termination (Assemble). The coordinator P0 decides to terminate if there is no

change to any update parameters (see (2.a) above). If so, P0 pulls partial results from

all workers, and computes Q(G) by Assemble. It returns Q(G).

We now introduce the programming model of GRAPE. For a class Q of graph

queries, one only needs to provide three core functions PEval, IncEval and Assemble

referred to as a PIE program. These are conventional sequential algorithms, and can

be picked from Library API of GRAPE. We next elaborate a PIE program.

2.2.2 PEval: Partial Evaluation

PEval takes a query Q ∈ Q and a fragment Fi of G as input, and computes partial

answers Q(Fi) at worker Pi in parallel for all i∈ [1,m]. It may be any existing sequential

algorithm T for Q , extended with the following:

• partial result kept in a designated variable; and

• message specification as its interface to IncEval.
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Communication between workers is conducted via messages, defined in terms of

update parameters as follows.

(1) Message preamble. PEval (a) declares status variables~x, and (b) specifies a set Ci

of nodes and edges relative to Fi.I or Fi.O. The status variables associated with Ci are

denoted by Ci.x̄, referred to as the update parameters of Fi.

Intuitively, variables in Ci.x̄ are the candidates to be updated by incremental steps.

In other words, messages Mi to worker Pi are updates to the values of variables in Ci.x̄.

More specifically, Ci is specified by an integer d and S, where S is either Fi.I or

Fi.O. That is, Ci is the set of nodes and edges within d-hops of nodes in S.

If d = 0, Ci is Fi.I or Fi.O. Otherwise, Ci may include nodes and edges from other

fragments Fj of G (see an example in Section 2.4).

The variables are declared and initialized in PEval. At the end of PEval, it sends

the values of Ci.x̄ to coordinator P0.

(2) Message segment. PEval may specify function aggregateMsg, to resolve conflicts

when multiple messages from different workers attempt to assign different values to

the same update parameter (variable). When such a strategy is not provided, GRAPE

picks a default exception handler.

(3) Message grouping. GRAPE deduces updates to Ci.~x for i ∈ [1,m], and treats them

as messages exchanged among workers. More specifically, at coordinator P0, GRAPE

identifies and maintains Ci.x̄ for each worker Pi. Upon receiving messages from Pi’s,

GRAPE works as follows.

(a) Identifying Ci. It deduces Ci for i ∈ [1,m] by referencing fragmentation graph GP,

and Ci remains unchanged in the entire process. It maintains update parameters Ci.x̄

for Fi.

(b) Composing Mi. For messages from each Pi, GRAPE (i) identifies variables in Ci.x̄

with changed values; (ii) deduces their designations Pj by referencing GP; if P is edge-

cut, the variable tagged with a node v in Fi.O will be sent to worker Pj if v is in Fj.I (i.e.,

if i 7→ j is in GP(v)); similarly for v in Fi.I; if P is vertex-cut, it identifies nodes shared

by Fi and Fj (i 6= j); and (iii) it combines all changed variables values designated to

Pj into a single message M j, and sends M j to worker Pj in the next superstep for all

j ∈ [1,m].

If a variable x is assigned a set S of values from different workers, function aggre-

gateMsg is applied to S to resolve the conflicts, and its result is taken as the value of
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x.

These are automatically conducted by GRAPE, which minimizes communication

costs by passing only updated variable values. To reduce the workload at the coordina-

tor, alternatively each worker may maintain a copy of GP and deduce the designation

of its messages in parallel.

Example 1: We show how GRAPE parallelizes SSSP. Consider a directed graph

G = (V,E,L) in which for each edge e, L(e) is a positive number. The length of a path

(v0, . . . ,vk) in G is the sum of L(vi−1,vi) for i ∈ [1,k]. For a pair (s,v) of nodes, denote

by dist(s,v) the shortest distance from s to v, i.e., the length of a shortest path from s

to v. Given graph G and a node s in V , GRAPE computes dist(s,v) for all v ∈ V . It

adopts edge-cut partition [BLV14]. It deduces Fi.O by referencing GP and stores Fi.O

at each fragment Fi.

As shown in Fig. 2.2, PEval (lines 1-14) is verbally identical to Dijsktra’s sequen-

tial algorithm [FT87]. The only changes are message preamble and segment (under-

lined). It declares an integer variable dist(s,v) for each node v, initially ∞ (except

dist(s,s) = 0). It specifies min as aggregateMsg to resolve conflicts: if there are mul-

tiple values for the same dist(s,v), the smallest value is taken by the linear order on

integers. The update parameters are Ci.x̄ = {dist(s,v) | v ∈ Fi.O}.
At the end of its process, PEval sends Ci.x̄ to coordinator P0. At P0, GRAPE main-

tains dist(s,v) for all v ∈ F .O = F .I. Upon receiving messages from all workers, it

takes the smallest value for each dist(s,v). It finds those variables with smaller values,

deduces their destinations by referencing GP, groups them into message M j, and sends

M j to Pj. 2

2.2.3 IncEval: Incremental Evaluation

Given query Q, fragment Fi, partial results Q(Fi) and message Mi (updates to Ci.x̄),

IncEval computes Q(Fi⊕Mi) incrementally, making maximum reuse of the compu-

tation of Q(Fi) in the last round. Each time after IncEval is executed, GRAPE treats

Fi⊕Mi and Q(Fi⊕Mi) as Fi and Q(Fi), respectively, for the next round of incremental

computation.

IncEval can take any existing sequential incremental algorithm T∆ for Q . It shares

the message preamble of PEval. At the end of the process, it identifies changed values

to Ci.x̄ at each Fi, and sends the changes as messages to P0. At P0, GRAPE composes
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Input: Fi(Vi,Ei,Li), source vertex s

Output: Q(Fi) consisting of current dist(s,v) for all v ∈Vi

Message preamble: (designated) /*candidate set Ci is Fi.O*/

for each node v ∈Vi, an integer variable dist(s,v)

/*sequential algorithm for SSSP (pseudo-code)*/

1. initialize priority queue Que;

2. dist(s,s) := 0;

3. for each v in Vi do

4. if v! = s then

5. dist(s,v) := ∞;

6. Que.addOrAdjust(s, dist(s,s));

7. while Que is not empty do

8. u := Que.pop() // pop vertex with minimal distance

9. for each child v of u do // only v that is still in Q

10. alt := dist(s,u) + Li(u,v);

11. if alt < dist(s,v) then

12. dist(s,v) := alt;

13. Que.addOrAdjust(v, dist(s,v));

14. Q(Fi) := {dist(s,v) | v ∈Vi}

Message segment: Mi := {dist(s,v) | v ∈ Fi.O};
aggregateMsg = min(dist(s,v));

Figure 2.2: Algorithm PEval for SSSP

messages as described in 3(b) above.

Boundedness. Graph computations are typically iterative. GRAPE reduces the costs of

iterative computations by promoting bounded incremental algorithms for IncEval.

Consider an incremental algorithm T∆ for Q . Given G, Q ∈ Q , Q(G) and updates

M to G, it computes ∆O such that Q(G⊕M) = Q(G)⊕∆O, where ∆O denotes changes

to the old output O(G). It is said to be bounded if its cost can be expressed as a

function in the size of |CHANGED| = |∆M|+ |∆O|, i.e., the size of changes in the input

and output [RR96b, FWW13].

Intuitively, |CHANGED| represents the updating costs inherent to the incremental
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problem for Q itself. For a bounded IncEval, its cost is determined by |CHANGED|,
not by the size |Fi| of entire Fi, no matter how big |Fi| is.

Input: Fi(Vi,Ei,Li), partial result Q(Fi), message Mi

Output: Q(Fi⊕Mi)

1. initialize priority queue Que;

2. for each dist(s,v) in M do

3. Que.addOrAdjust(v,dist(s,v));

4. while Que is not empty do

5. u := Que.pop() /* pop vertex with minimum distance*/

6. for each children v of u do

7. alt := dist(s,u) + Li(u,v);

8. if alt < dist(s,v) then

9. dist(s,v) := alt;

10. Que.addOrAdjust(v,dist(s,v));

11. Q(Fi) := {dist(s,v) | v ∈Vi}

Message segment: Mi = {dist(s,v) | v ∈ Fi.O, dist(s,v) decreased};

Figure 2.3: Algorithm IncEval for SSSP

Example 2: Continuing with Example 1, we give IncEval in Fig. 2.3. It is the sequen-

tial incremental algorithm for SSSP in [RR96b], in response to changed dist(s,v) for v

in Fi.I (here Mi includes changes to dist(s,v) for v ∈ Fi.I deduced from GP).

Using a queue Que, it starts with Mi, propagates the changes to affected area, and

updates the distances (see [RR96b]). The partial result is now the revised distances

(line 11).

At the end of the process, IncEval sends to coordinator P0 updated values of those

status variables in Ci.x̄, as in PEval. It applies aggregateMsg min to resolve conflicts.

The only changes to the algorithm of [RR96b] are underlined in Fig. 2.3. Fol-

lowing [RR96b], one can show that IncEval is bounded: its cost is determined by the

sizes of “updates” |Mi| and the changes to the output. This reduces the cost of iterative

computation of SSSP (the while and for loops). 2
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2.2.4 Assemble Partial Results

Function Assemble takes partial results Q(Fi⊕Mi) and fragmentation graph GP as

input, and combines Q(Fi⊕Mi) to get Q(G). It is triggered when no more changes can

be made to update parameters Ci.x̄ for any i ∈ [1,m].

Example 3: Continuing with Example 2, Assemble (not shown) for SSSP takes Q(G)

=
⋃

i∈[1,n]Q(Fi), the union of the shortest distance for each node in each Fi.

The GRAPE process terminates with correct Q(G). The updates to Ci.x̄ are “mono-

tonic”: the value of dist(s,v) for each node v decreases or remains unchanged. There

are finitely many such variables. Furthermore, dist(s,v) is the shortest distance from

s to v, as warranted by the correctness of the sequential algorithms [FT87, RR96b]

(PEval and IncEval). 2

Putting these together, one can see that a PIE program parallelizes a graph query

class Q provided with a sequential algorithm T (PEval) and a sequential incremental

algorithm T∆ (IncEval) for Q . Assemble is typically a straightforward sequential algo-

rithm. A large number of sequential (incremental) algorithms are already in place for

various Q . Moreover, there have been methods for incrementalizing graph algorithms,

to get incremental algorithms from their batch counterparts [Har04, FHT17]. Thus

GRAPE makes parallel graph computations accessible to a large group of end users.

In contrast to existing graph systems, GRAPE plugs in T and ∆T as a whole, and

confines communication specification to the message segment of PEval. Users do not

have to think “like a vertex” [MAB+10, GLG+12, TBC+13, YCLN14] when program-

ming. As opposed to vertex-centric and block-centric systems, GRAPE runs sequential

algorithms on entire fragments. Moreover, IncEval employs incremental evaluation to

reduce cost, which is a unique feature of GRAPE. Note that IncEval speeds up iterative

computations by minimizing unnecessary recomputation of Q(Fi), no matter whether

it is bounded or not.

2.2.5 GRAPE API

GRAPE provides a declarative programming interface for users to plug in the sequen-

tial algorithms as UDFs (user-defined functions). Upon receiving (sequential) algo-

rithms, GRAPE registers them as stored procedures in its API library, and maps them

to a query class Q .

In addition, GRAPE can simulate MapReduce. More specifically, GRAPE supports
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two types of messages:

• designated messages from one worker to another; and

• key-value pairs (key, val), to simulate MapReduce.

The messages generated by PEval and IncEval are marked key-value or designated.

The messages we have seen so far are designated, and GRAPE automatically identifies

their destinations at coordinator P0, as described in Section 2.2.2.

If the messages are marked key-value, GRAPE automatically recognizes the key

and value segments by parsing the message declaration in PEval and IncEval. Follow-

ing MapReduce, it groups the messages by keys at coordinator P0, and distributes them

across m workers, to balance the workload.
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2.3 Foundation of GRAPE

Below we present the correctness guarantees of the parallel model of GRAPE, and

demonstrate the power of GRAPE.

2.3.1 Correctness of Parallel Model

Intuitively, GRAPE supports a simultaneous fixpoint operator φ(R1, . . . ,Rm) over m

fragments defined as:

R0
i = PEval(Q,F0

i [x̄i]),

Rr+1
i = IncEval(Q,Rr

i ,F
r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results in step r at worker

Pi, F0
i = Fi, Fr

i [x̄i] is fragment Fi at the end of superstep r carrying update parameters

Ci.x̄i, and Mi indicates changes to Ci.x̄i. The computation proceeds until it reaches r0

when Rr0
i = Rr0+1

i . At this point, Assemble(GP,R
r0
1 , . . . ,R

r0
m ) is computed and returned.

We next prove a correctness guarantee for the simple model with designated mes-

sages. We start with notations.

(1) We say that GRAPE with PEval, IncEval and P terminates if for all queries Q ∈ Q
and all graphs G, there exists r0 such that at superstep r0, Rr0

i = Rr0+1
i for all i ∈ [1,m].

(2) Denote by G[x̄] a graph G with update parameters x̄. We say that PEval is correct for

Q if for all Q ∈ Q and graphs G, PEval(Q,G[x̄]) returns Q(G[x̄]). Similarly, IncEval

is correct for Q if IncEval(Q,G[x̄],M,Q(G[x̄])) returns Q(G[x̄⊕M]), where x̄⊕M

denotes x̄ updated by M.

We say that Assemble is correct for Q w.r.t. P if when GRAPE with PEval, IncEval

and P terminates at superstep r0, Assemble(Q(F1[x̄
r0
1 ]), . . . ,Q(Fm[x̄

r0
m ])) = Q(G), where

x̄r0
i denotes the values of parameters Ci.x̄i at round r0.

(3) We say that PEval and IncEval satisfy the monotonic condition w.r.t. P if for all

variables x ∈Ci.x̄, i ∈ [1,m] (a) the values of x are computed from values in the active

domain of G, and (b) there exists a partial order px on the values of x such that IncEval

updates x in the order of px.

Intuitively, condition (a) says that x draws values from a finite domain, and condi-

tion (b) says that x is updated “monotonically” following px. These ensure that GRAPE

parallelization with PEval, IncEval and P terminate.
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For instance, dist(s,v) in Example 1 can only be changed in the decreasing order

(i.e., min for aggregateMsg).

Theorem 1 [Assurance Theorem]: Consider sequential algorithms PEval, IncEval,

Assemble for a graph query class Q , and a partition strategy P. If (a) PEval and

IncEval satisfy the monotonic condition w.r.t. P, and (b) PEval, IncEval and Assemble

are correct for Q w.r.t. P, then GRAPE with PEval, IncEval, Assemble and P guaran-

tees to terminate and correctly compute Q(G) for all Q ∈ Q and graphs G. 2

Proof: By the correctness of Assemble, PEval and IncEval, we only need to show the

following: for any query Q and graph G,

(1) there exists a natural number r(Q,G) for Q and G such that GRAPE terminates at

superstep r(Q,G), with deterministic values x̄
r(Q,G)

i for all update parameters in all

fragments Fi of G (for i ∈ [1,m]); and

(2) IncEval computes partial answers Q(Fi[x̄
r(Q,G)

i ]) on all fragments Fi(i ∈ [1,m]) of

G.

Intuitively, (1) ensures that given Q and G, GRAPE always terminates in the same

state, and (2) guarantees that partial answers Q(Fi[x̄
r(Q,G)

i ]) are correctly computed for

all fragments Fi (i ∈ [1,m]) of G. If these hold, GRAPE is guaranteed to return Q(G)

by the correctness of Assemble.

(1) We first show that GRAPE terminates. Assume by contradiction that there exist Q

and G such that GRAPE does not terminate. Consider the values of update parame-

ters in the fragments of G during the run. Since at least one update parameter has to

be updated in a superstep of incremental computation (except the last step), and the

total number of distinct values to update parameters is bounded by Q and G by the

monotonic condition (a) given. Hence there must exist supersteps p and q such that for

each i ∈ [1,m], x̄p
i = x̄q

i , i.e., the values to all the parameters changed at supersteps p

and q are the same. This contradicts the monotonic condition (b) that requires IncEval

to update parameters following a partial order on their values. Thus for all Q and G,

GRAPE must terminate.

To verify that the values to Ci.x̄ when GRAPE terminates are deterministic for Q

and G, we show the following: the values to Ci.x̄ are updated deterministically at each

superstep r in the run of GRAPE, by induction on r. (a) When r = 1, i.e., in the first

superstep by PEval, the parameters are initialized deterministically by the definition
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of PEval. (b) Assume that when r ≤ k, the parameters in fragments of G for Q are

changed deterministically at step r. Consider step r = k+1. Since x̄k
i ’s (i ∈ [1,m]) are

deterministic, IncEval generates Mi to each Fi deterministically, i.e., x̄k+1
i = x̄k

i ⊕Mi are

updated deterministically. That is, values to x̄k+1
i are also deterministic, independent

of the order of fragments on which IncEval terminates at each superstep. Therefore,

GRAPE always terminates for Q and G with the same final state for the update param-

eters.

(2) We prove that for any Q and G, at any superstep r of the run of GRAPE for Q and G

with PEval, IncEval and Assemble, partial answers Q(Fi[x̄r
i ]) (i ∈ [1,m]) are computed

on all fragments Fi of G. We show this by induction on r.

(a) When r = 1. By the correctness of PEval, partial answers Q(Fi[x̄1
i ]) are computed

by PEval on fragments Fi of G.

(b) Assume that when r = k, GRAPE computes partial answers Q(Fi[x̄k
i ]) on fragments

Fi of G. Consider r = k + 1. By the correctness of IncEval, GRAPE also correctly

computes Q(Fi[x̄k
i ⊕M]) = Q(Fi[x̄k+1

i ]) on each fragment Fi of G. Therefore, GRAPE

computes partial answers on fragments of G at each superstep in the run for Q and G.

2

Remark. Since PEval and IncEval can be any graph algorithms and the halting prob-

lem for Turing machine is undecidable, the monotonic condition is one of the sufficient

conditions for termination and correctness. As demonstrated by the variety of algo-

rithms in the dissertation, most of common graph computations satisfy this condition.

Moreover, by the formulation of the fixpoint computation, any existing conditions for

contracting fixpoint computation apply for the termination of GRAPE parallelization.

It should be remarked that no other systems provide similar sufficient conditions for

termination and correctness, to the best of my knowledge.

When the monotonicity is not guaranteed, the programmers may have to warrant

the correctness and termination themselves, like the state-of-the-art graph query en-

gines.

When it is required to terminate within a fixed number c of rounds, such as PageR-

ank and SGD, the results are often defined as the results of the computation within c

bounds. We do not enforce such a default bound by GRAPE, and if users opt to do so,

it is up to them to justify the semantics and correctness.
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2.3.2 The Power of GRAPE

GRAPE can readily switch to other parallel models.

Following [Val91], we say that a parallel model M1 can optimally simulate model

M2 if there exists a compilation algorithm that transforms any program with cost C

on M2 to a program with cost O(C) on M1. The cost includes computational and

communication cost. For GRAPE, these are measured by the running time of PEval,

IncEval and Assemble on all the processors, and by the total size of the messages passed

among all the processors in the entire process.

We show that GRAPE optimally simulates popular parallel models MapReduce

[DG08], BSP [Val90] and PRAM [Val91].

Theorem 2 [Simulation Theorem]: (1) all BSP algorithms with n workers in t su-

persteps can be optimally simulated on GRAPE with n workers in t supersteps, without

extra cost in each superstep;

(2) all MapReduce programs using n processors can be optimally simulated by GRAPE

using n processors; and

(3) all CREW PRAM algorithms using O(P) total memory, O(P) processors and t time

can be run in GRAPE in O(t) supersteps using O(P) processors with O(P) memory.

2

As a consequence, all algorithms developed for graph systems based on MapRe-

duce and/or BSP can be readily migrated to GRAPE without much extra cost, including

Pregel [MAB+10], GraphX [GXD+14], Giraph++ [TBC+13] and Blogel [YCLN14].

We next give the proof outline.

Bulk-Synchronous parallel model. A BSP algorithm proceeds in supersteps. Each

superstep consists of an input phase, a local computation phase and an output phase.

The workers are synchronized between supersteps. The cost of a superstep is expressed

as w+gh+ l, where (a) w is the maximum number of operations by any worker within

the superstep; (b) h is the maximum amount of messages sent/received by any workers;

(c) g is the communication throughput ratio, or bandwidth inefficiency; and (d) l is the

communication latency or synchronization periodicity. We define the throughput and

latency for GRAPE similarly.

For Theorem 2(1), each worker of BSP is simulated by a worker in GRAPE. PEval

is defined to perform the same local computation in the first superstep of BSP, IncEval
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simulates the actions of each worker in the later supersteps of the BSP algorithm, and

Assemble collects and combines the partial results. Message routing and synchro-

nization control adopt the same strategy of BSP, via designated messages, where the

coordinator acts as the synchronization router. One can verify that the simulation does

not incur extra cost.

In particular, Pregel [MAB+10] assigns a virtual worker to each node (single-

vertex fragments). GRAPE reduces its excessive messages, supports graph-level opti-

mization, and employs incremental steps to speed up iterative computation.

MapReduce. A MapReduce program is specified by a Map function and a Reduce

function [DG08]. Its computation is a sequence of map, shuffle and reduce steps that

operate on a set of key-value pairs. Its cost is measured in terms of (a) N: the number

of rounds of map-shuffle-reduce conducted in the process, (b) Si: the communication

cost of round i, as the sum of the sizes of input and output for all reducers, and (c) Hi:

the computational cost of round i, as the sum of the time taken by each mapper and

reducer in round i.

For Theorem 2(2), GRAPE uses PEval to perform the map phase of the first map-

shuffle-reduce round, and two supersteps (IncEval) to simulate each later round, one for

map and the other for reduce, via key-value messages (see Section 2.2.5). We provide

a compilation function that given Map and Reduce functions, constructs (a) PEval as

the Map function, (b) IncEval by invoking Map for odd supersteps and Reduce for

even supersteps, and (c) Assemble by simply taking a union of partial results. By

induction on the round N of MapReduce, one can verify that the transformed GRAPE

process has running time O(C), where C is the parallel running time of the MapReduce

computation.

There exist more efficient compilation algorithms by combining multiple MapRe-

duce tasks into a single GRAPE superstep. Moreover, GRAPE employs (bounded)

IncEval to reduce MapReduce cost for iterative graph computations.

Parallel Random Access Machine. PRAM consists of a number of processors sharing

memory, and any processor can access any memory cell in unit time. The computa-

tion is synchronous. In one unit time, each processor can read one memory location,

execute a single operation and write into one memory location. PRAM is further clas-

sified for access policies of shared memory, e.g., CREW PRAM indicates concurrent

read and exclusive write (see [Val91] for details).

It is known that a CREW PRAM algorithm using t time with O(P) total mem-
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ory and O(P) processors can be simulated by a MapReduce algorithm in O(t) rounds

using at most O(P) reducers and memory [KSV10]. By Theorem 2(2), each MapRe-

duce algorithm in r rounds can be simulated by GRAPE in 2r supersteps. From these

Theorem 2(3) follows.

We next give the detailed proof.

Proof: (1) Since BSP and GRAPE have the same amount of physical workers, each

worker of BSP is simulated by a worker in GRAPE. Initially the graph is distributed

in the same way as that in BSP algorithm A . PEval is defined to do the same as the

local computation during the first superstep of A , and it generates messages that are

identical to the ones in A . From the second superstep, IncEval conducts the actions

of each worker when executing BSP algorithm. Message routing and synchronization

control adopt the same strategy as in A . Obviously the computation on each worker

in GRAPE is the same as its counterpart in BSP, and all messages sent or received by

each pair of workers within each superstep are also identical, which lead to an optimal

simulation.

(2) We use two supersteps in GRAPE to simulate one map-shuffle-reduce round of a

MapReduce algorithm, including a map phase and a reduce phase, in the key-value

message mode (see Section 2.2.5) for messages. More specifically, for a MapReduce

algorithm A that has R rounds, we implement each round r ∈ [1,R] of A in GRAPE as

follows.

(a) Round r = 1: Initially input data is distributed among the worker by using the same

strategy as in A , such that each worker is assigned the same data as that of the mapper

it simulates. We define PEval to be the same as the mapping function µ in round 1,

i.e., it performs the same computation as specified in µ and generates an intermediate

multiset of key-value pairs. Moreover, the key-value pairs are treated as messages and

sent to the coordinator P0. Then P0 groups all the messages (〈key;value〉 pairs) with

the same key and sends them to a worker that simulates the corresponding reducer

dealing with key in A . This process simulates one shuffle step of A . After that, each

worker that receives a message (list) Lk = 〈k;vi j . . .〉 simulates a reducer, i.e., we let

function IncEval in this superstep do the same as the reducer function ρ in round 1.

Note that IncEval uses the messages received only, ignoring the local data. The outputs

of IncEval are also treated as messages and delivered to P0. Upon receiving these, P0

routes them based on the distribution of key-value pairs to mappers in the next round
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of A , so that each worker gets the same key-value pairs as that of the mapper it will

simulate in the next round.

(b) Round r > 1: The simulations for latter rounds are similar to those of the first

round, except that PEval is no longer used. More specifically, the action of mapping

function µ in round r is simulated by IncEval instead of PEval as in case (a). Hence,

function IncEval is carefully designed to model the computation of the functions µ and

ρ in different rounds of A . IncEval operates on newly received messages alone, to

simulate MapReduce. When A terminates, P0 stops routing the messages produced in

the last superstep and returns result in the same way as A , possibly using Assemble.

It is easy to verify that the computational and communication cost of the GRAPE

algorithm is the same as A . Indeed, every worker simulates a mapper/reducer and

conducts the same computation, and all the messages generated are identical to the

key-value pairs transmitted in the shuffle network of A . Thus, this makes an optimal

simulation.

(3) A proof has been given above.

Taken together, GRAPE can easily switch to different modes, and does not imply

degradation of computational power. 2
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2.4 Graph Computations in GRAPE

We have seen how GRAPE parallelizes graph traversal SSSP (Section 2.2). We next

show how GRAPE parallelizes existing sequential algorithms for a variety of graph

computations. We take pattern matching, connectivity and collaborative filtering as

examples (Sections 2.4.1–2.4.3, respectively).

2.4.1 Graph Pattern Matching

We start with graph pattern matching commonly used in, e.g., social media marketing

and knowledge base expansion.

A graph pattern is a graph Q = (VQ,EQ,LQ), in which (a) VQ is a set of query

nodes, (b) EQ is a set of query edges, and (c) each node u in VQ carries a label LQ(u).

We study two semantics of graph pattern matching.

Graph simulation. A graph G matches a pattern Q via simulation if there is a binary

relation R ⊆VQ×V such that

(a) for each query node u∈VQ, there exists a node v∈V such that (u,v)∈R, referred

to as a match of u; and

(b) for each pair (u,v) ∈ R, (a) LQ(u) = L(v), and (b) for each query edge (u,u′) in

Eq, there exists an edge (v,v′) in graph G such that (u′,v′) ∈ R.

Graph pattern matching via graph simulation is as follows.

• Input: A directed graph G and a pattern Q.

• Output: The unique maximum relation Q(G).

It is known that if G matches Q, then there exists a unique maximum relation [HHK95],

referred to as Q(G). If G does not match Q, Q(G) is the empty set. Moreover, Q(G)

can be computed in O((|VQ|+ |EQ|)(|V |+ |E|)) time [HHK95, FLM+10].

We show how GRAPE parallelizes graph simulation. Like SSSP, it adopts an edge-

cut partition strategy.

(1) PEval. GRAPE takes the sequential simulation algorithm of [HHK95] as PEval

to compute Q(Fi) in parallel. Its message preamble declares a Boolean status variable

x(u,v) for each query node u in VQ and each node v in Fi, indicating whether v matches u,

initialized true. It takes Fi.I as candidate set Ci. For each node u∈VQ, PEval computes

a set sim(u) of candidate matches v in Fi, and iteratively removes from sim(u) those
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nodes that violate the simulation condition (see [HHK95] for details). At the end of

the process, PEval sends Ci.x̄ = {x(u,v) | u ∈VQ,v ∈ Fi.I} to coordinator P0.

At coordinator P0, GRAPE maintains x(u,v) for all v ∈ F .I. Upon receiving mes-

sages from all workers, it changes x(u,v) to false if it is false in one of the messages.

This is specified by min as aggregateMsg, taking the order false prec true. GRAPE

identifies those variables that become false, deduces their destinations by referencing

GP and F .I = F .O, groups them into messages M j, and sends M j to Pj.

(2) IncEval is the sequential incremental graph simulation algorithm of [FWW13] in

response to edge deletions. If x(u,v) is changed to false by message Mi, it is treated

as deletion of “cross edges” to v ∈ Fi.O. It starts with changed status variables in Mi,

propagates the changes to affected area, and removes from sim matches that become

invalid (see [FWW13] for details). The partial result is now the revised sim relation. At

the end of the process, IncEval sends to coordinator P0 updated values of those status

variables in Ci.x̄, as in PEval.

IncEval is semi-bounded [FWW13]: its cost is decided by the sizes of “updates”

|Mi| and changes to the affected area necessarily checked by all incremental algorithms

for Sim, not by |Fi|.

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n]Q(Fi), the union of all partial matches (sim

at each Fi).

(4) The correctness is warranted by Theorem 1: the sequential algorithms [HHK95,

FWW13] (PEval and IncEval) are correct, and the “monotonic” updates to Ci.x̄: x(u,v)
is initially true for each border node v, and is changed at most once to false.

Subgraph isomorphism. We next parallelize subgraph isomorphism, under which a

match of pattern Q in graph G is a subgraph of G that is isomorphic to Q. Graph pattern

matching via subgraph isomorphism is to compute the set Q(G) of all matches of Q in

G. It is intractable: it is NP-complete to decide whether Q(G) is nonempty.

GRAPE parallelizes VF2, the sequential algorithm of [CFSV04] for subgraph iso-

morphism. It adopts a default edge-cut graph partition strategy P. It has two supersteps,

one for PEval and the other for IncEval, outlined as follows.

(1) PEval identifies update parameter Ci.x̄. It declares a status variable xid with each

node and edge, to store its id. It specifies the dQ-neighbor NdQ(v) of each node v∈ Fi.I,

where dQ is the diameter of pattern Q, i.e., the length of the shortest path between any

two nodes in Q, and Nd(v) is the subgraph of G induced by the nodes within d hops of

v.
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At P0, Ci.x̄ is identified for each fragment Fi (this can be done in parallel by workers

as remarked in Section 2.2.2). Message Mi is composed and sent to Pi, including all

nodes and edges in Ci.x̄ that are from fragments Fj with j 6= i. The values of variables

in Ci.x̄ (the ids) will not be changed, and thus no partial order is defined on their values.

(2) IncEval is VF2. It computes Q(Fi⊕Mi) at each worker Pi in parallel, on fragment

Fi extended with dQ-neighbor of each node in Fi.I. IncEval sends no messages since

the values of variables in Ci.x̄ remain unchanged. As a result, IncEval is executed once,

and hence two supersteps suffice.

(3) Assemble simply takes the union of all partial matches computed by IncEval from

all workers.

(4) The correctness of the process is assured by VF2 and the locality of subgraph iso-

morphism: a pair (v,v′) of nodes in G is in a match of Q only if v is in the dQ-neighbor

of v′.

2.4.2 Graph Connectivity

We next study graph connectivity. We parallelize sequential algorithms for computing

connected components (CC).

Consider an undirected graph G. A subgraph Gs of G is a connected component

of G if (a) it is connected, i.e., for any pair (v,v′) of nodes in Gs, there exists a path

between v to v′, and (b) it is maximum, i.e., adding any node to Gs makes the induced

subgraph no longer connected.

• Input: An undirected graph G = (V,E,L).

• Output: All connected components of G.

It is known that CC is in O(|G|) time [BJG08].

GRAPE partitions G by edge-cut. It picks a sequential CC algorithm as PEval. At

each fragment Fi, PEval computes its local connected components and creates their

ids. The component ids of the border nodes are exchanged with neighboring frag-

ments. The (changed) ids are then used to incrementally update local components in

each fragment by IncEval, which simulates a “merging” of two components whenever

possible, until no more changes can be made.

(1) PEval declares an integer status variable v.cid for each node v in fragment Fi, ini-

tialized as its node id.
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PEval uses a standard sequential traversal (e.g., DFS) to compute the local con-

nected components of Fi and determines v.cid for each v ∈ Fi. For each local com-

ponent C, (a) PEval creates a “root” node vc carrying the minimum node id in C as

vc.cid, and (b) links all the nodes in C to vc, and sets their cid as vc.cid. These can be

completed in one pass of the edges of Fi via DFS. At the end of process, PEval sends

{v.cid | v ∈ Fi.I} to coordinator P0.

At P0, GRAPE maintains v.cid for each all v ∈ F .I. It updates v.cid by taking

the smallest cid if multiple cids are received, by taking min as aggregateMsg in the

message segment of PEval. It groups the nodes with updated cids into messages M j,

and sends M j to Pj by referencing GP .

(2) IncEval incrementally updates the cids of the nodes in Fi upon receiving Mi. The

message Mi sent to Pi consists of v.cid with updated (smaller) values. For each v in Mi,

IncEval (a) finds the root vc of v, and (b) for vc and all the nodes linked to it, directly

changes their cids to v.cid.

The incremental computation of IncEval is bounded: it takes O(|Mi|) time to iden-

tify the root nodes, and O(|AFF|) time to update cids by following the direct link from

the root nodes, where AFF consists of only those nodes with their cid changed. Hence,

it avoids redundant local traversal, and makes the complexity of IncEval independent

of |Fi|.

(3) Assemble merges all the nodes having the same cids in a bucket as a single con-

nected component, and returns all the connected components as a set of buckets.

(4) Correctness. The process terminates as the cids of the nodes are monotonically

decreasing, until no changes can be made. Moreover, it correctly merges two local

connected components by propagating the smaller component id.

2.4.3 Collaborative Filtering

As an example of machine learning, we consider collaborative filtering (CF) [KBV+09],

a method commonly used for inferring user-product rates in social recommendation.

It takes as input a bipartite graph G that includes users U and products P, and a set

of weighted edges E ⊆U ×P. (1) Each user u ∈U (resp. product p ∈ P) carries (un-

known) latent factor vector u. f (resp. p. f ). (2) Each edge e = (u, p) in E carries a

weight r(e), estimated as u. f T ∗ p. f (possibly /0 i.e., “unknown”) that encodes a rating

from user u to product p. The training set ET refers to edge set {e | r(e) 6= /0,e ∈ E},
i.e., all the known ratings. The CF problem is as follows.
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• Input: Directed bipartite graph G, training set ET .

• Output: The missing factor vectors u. f and p. f that minimizes an error function

ε( f ,ET ), estimated as min∑((u,p)∈ET )(r(u, p)−u. f T p. f )+λ(‖u. f‖2 +‖p. f‖2).

That is, CF predicts all the unknown ratings by learning the factor vectors that “best

fit” ET . A common practice to approach CF is to use stochastic gradient descent (SGD)

algorithm [KBV+09], which iteratively (1) predicts error ε(u, p) = r(u, p)−u. f T ∗ p. f ,

for each e = (u, p) ∈ ET , and (2) updates u. f and p. f accordingly towards minimizing

ε( f ,ET ).

GRAPE parallelizes CF by edge-cut partitioning ET (as a bipartite graph). It adopts

SGD [KBV+09] as PEval and an incremental algorithm ISGD [VJG14] as IncEval,

using coordinator P0 to synchronize the shared factor vectors u. f and p. f .

(1) PEval. It declares a status variable v.x = (v. f , t) for each node v, where v. f is

the factor vector of v (initially /0), and t bookkeeps a timestamp at which v. f is lastly

updated. The candidate set is Ci = Fi.O. PEval is essentially the sequential SGD algo-

rithm of [KBV+09]. It processes a “mini-batch” of training examples independently

of others, to compute the prediction error ε(u, p), and update local factor vectors f in

the opposite direction of the gradient as:

u. f t = u. f t−1 + γ(ε(u, p)∗ v. f t−1−λ∗u. f t−1); (2.1)

p. f t = p. f t−1 + γ(ε(u, p)∗u. f t−1−λ∗ p. f t−1). (2.2)

At the end of its process, PEval sends messages Mi that contains updated v.x for v ∈Ci

to coordinator P0.

At P0, GRAPE maintains v.x = (v. f , t) for all v ∈ F .I = F .O. Upon receiving

updated values (v. f ′, t ′) with t ′ > t, it changes v. f to v. f ′, i.e., it takes max as aggre-

gateMsg on timestamps. GRAPE then groups the updated vectors into messages M j,

and sends M j to Pj as usual.

(2) IncEval is algorithm ISGD of [VJG14]. Upon receiving Mi at worker Pi, it computes

Fi⊕Mi by treating M j as updates to factor vectors of nodes in Fi.I, and only modifies

affected factor vectors as in PEval based solely on the new observations. It sends the

updated vectors in Ci as in PEval.

(3) Assemble simply takes the union of all the factor vectors of nodes from the workers

(to be used for recommendation).

(4) Correctness. The convergence condition in a sequential SGD algorithm [KBV+09,

VJG14] is specified either as a predetermined maximum number of supersteps (as
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in GraphLab), or when ε( f ,ET ) is smaller than a threshold. In either case, GRAPE

correctly infers CF models guaranteed by the correctness of SGD and ISGD, and by

monotonic updates with the latest changes as in sequential SGD algorithms.
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2.5 Implementation of GRAPE

We next outline an implementation of GRAPE.

Architecture overview. GRAPE adopts a four-tier architecture depicted in Fig. 2.5,

described as follows.

(1) Its top layer is a user interface. As shown in Fig. 2.4, GRAPE supports interactions

with (a) developers who specify and register sequential PEval, IncEval and Assemble

as a PIE program for a class Q of graph queries (the plug panel); and (b) end users

who plug-in PIE programs from API library, pick a graph G, enter queries Q ∈ Q , and

“play” (the play panel). GRAPE parallelizes the PIE program, computes Q(G) and

displays Q(G) in result and analytics consoles.

Figure 2.4: GRAPE interface

(2) At the core of the system is a parallel query engine. It manages sequential algo-

rithms registered in GRAPE API, makes parallel evaluation plans for PIE programs,

and executes the plans for query answering (see Section 2.2.1). It also enforces con-
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Figure 2.5: GRAPE architecture

sistency control and fault tolerance (see below).

(3) Underlying the query engine are (a) an MPI Controller (message passing interface)

for communications between coordinator and workers, (b) an Index Manager for load-

ing indices, (c) a Partition Manager to partition graphs, and (d) a Load Balancer to

balance workload (see below).

(4) The storage layer manages graph data in DFS (distributed file system). It is acces-

sible to the query engine, Index Manager, Partition Manager and Load Balancer.

Message passing. The MPI Controller of GRAPE makes use of a standard MPI for

parallel and distributed programs. It currently adopts MPICH [GLDS96], which is

also the basis of other systems such as GraphLab [LBG+12] and Blogel [YCLN14].

It generates messages and coordinates messages in synchronization steps using stan-

dard MPI primitives. It supports both designated messages and key-value pairs (see

Section 2.2).

Graph partition. The Graph Partitioner supports a variety of built-in partition algo-

rithms. Users may pick (a) METIS, a fast heuristic algorithm for sparse graphs [KK95],

(b) vertex cut and edge cut partitions [GLG+12] for graphs with small vertex cut-set

and edge cut-set, respectively, (c) 1-D and 2-D partitions [BDR13], which distribute

vertex and adjacent matrix to the workers, respectively, emphasizing on maximiz-

ing the parallelism of graph traversal, and (d) a fast streaming-style partition strat-
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egy [SK12] that assigns edges to high degree nodes to reduce cross edges. New data

partition strategies can also be plugged into GRAPE.

Graph-level optimization. In contrast to prior graph systems, GRAPE supports data-

partitioned parallelism by parallelizing the runs of sequential algorithms. Hence all

optimization strategies developed for sequential (batch and incremental) algorithms

can be readily plugged into GRAPE, to speed up PEval and IncEval over graph frag-

ments. As examples, below we outline some optimization strategies.

(1) Indexing. Any indexing structure effective for sequential algorithm can be com-

puted offline and directly used to optimize PEval, IncEval and Assemble, without re-

casting. GRAPE supports indices including (1) 2-hop index [CHKZ03] for reachability

queries; and (2) neighborhood-index [KWAY13] for candidate filtering in graph pat-

tern matching. Moreover, new indices can be “plugged” into GRAPE API library.

(2) Compression. GRAPE adopts query preserving compression [FLWW12] at the

fragment level. Given a query class Q and a fragment Fi, each worker Pi computes a

smaller Fc
i offline via a compression algorithm, such that for any query Q in Q , Q(Fi)

can be computed from Fc
i without decompressing Fc

i , regardless of what sequential

PEval and IncEval are used. As shown in [FLWW12], this compression scheme is

effective for graph pattern matching and graph traversal, among others.

(3) Dynamic grouping. GRAPE dynamically group a set of border nodes by adding

a “dummy” node, and sends messages from the dummy nodes in batches, instead of

one by one. This effectively reduces the amount of message communication in each

synchronization step.

(4) Load balancing. GRAPE groups computation tasks into work units, and estimates

the cost at each virtual worker Pi in terms of the fragment size |Fi| at Pi, the number of

border nodes in Fi, and the complexity of computation Q . Its Load Balancer computes

an assignment of the work units to physical workers, to minimize both computational

cost and communication cost (recall from Section 2.2 that GRAPE employs m virtual

workers and n physical workers, and m > n). The bi-criteria objective makes it easy to

deal with skewed graphs, when a small fraction of nodes are adjacent to a large fraction

of the edges in G, as found in social graphs.

To the best of our knowledge, these optimization strategies are not supported by the

state-of-the-art vertex-centric and block-centric systems. Indexing and query-preserving

compression for sequential algorithms do not carry over to vertex programs, and block-

centric programming essentially treats blocks as vertices rather than graphs. Moreover,
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dynamic grouping does not help vertex-level synchronization.

Fault tolerance. GRAPE employs an arbitrator mechanism to recover from both

worker failures and coordinator failures (a.k.a. single-point failures). It reserves a

worker Pa as arbitrator, and a worker S′c as a standby coordinator. It keeps sending

heart-beat signals to all workers and the coordinator. In case of failure, (a) if a worker

fails to respond, the arbitrator transfers its computation tasks to another worker; and (b)

if the coordinator fails, it activates the standby coordinator S′c to continue computation.

Consistency. Multiple workers may update copies of the same status variable. To cope

with this, (a) GRAPE allows users to specify a conflict resolution policy as function

aggregateMsg in PEval (Section 2.2.2), e.g., min for SSSP and CC (Section 2.4), based

on a partial order on the domain of status variables, e.g., linear order on integers. Based

on the policy, inconsistencies are resolved in each synchronization step of PEval and

IncEval processes. Moreover, Theorem 1 guarantees the consistency when the policy

satisfies the monotonic condition. (b) GRAPE also supports default exception handlers

when users opt not to specify aggregateMsg. In addition, GRAPE allows users to

specify generic consistency control strategies and register them in GRAPE API library.

We are also implementing a lightweight transaction controller, to support not only

queries but also updates such as insertions and deletions of nodes and edges. When the

load is light, it adopts non-destructive updates of functional databases [Tri89]. Oth-

erwise, it switches to multi-version concurrency control [BG81] that keeps track of

timestamps and versions, as also adopted by existing distributed systems.
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2.6 Experimental Study

We next empirically evaluate the performance of GRAPE, for its (1) efficiency and

communication cost using real-life graphs, (2) scalability with larger synthetic graphs,

(3) effectiveness of incremental steps, (4) compatibility with optimization techniques

developed for sequential graph algorithms, and (5) ease of programming. To focus on

the main idea, we compared GRAPE with prior graph systems by plugging existing

sequential algorithms into a preliminary implementation of GRAPE, without optimiza-

tion.

Experimental setting. We start with graphs and queries.

Datasets. We used three real-life graphs of different types, including (1) liveJournal [liv],

a social network with 4.8 million entities and 68 million relationships, with 100 labels

and 18293 connected components; (2) DBpedia [dbp], a knowledge base with 28 mil-

lion entities of 200 types and 33.4 million edges of 160 types; and (3) traffic [tra], a

US road network with 23 million nodes (locations) and 58 million edges.

To evaluate collaborative filtering (CF), we used another real-life dataset movieLens

[mov], which has 10 million movie ratings (as weighted edges) between a set of 71567

users and 10681 movies; these make a bipartite graph G for CF.

Queries. We randomly generated the following queries. (a) We sampled 10 source

nodes in each graph, and constructed an SSSP query for each node. (b) We generated

20 pattern queries for Sim and SubIso, controlled by |Q|= (|VQ|, |EQ|), the number of

nodes and edges, respectively, using labels drawn from the graphs (see Section 2.4).

Algorithms. We implemented the core functions PEval, IncEval and Assemble given in

Sections 2.2 and 2.4 for these query classes, registered in the API library of GRAPE.

We used METIS [KK95] as the default graph partition strategy. We adopted basic se-

quential algorithms, and only used optimized Sim to demonstrate how GRAPE inherits

optimization strategies developed for sequential algorithms (Exp-3).

We also implemented algorithms for the queries for Giraph, GraphLab and Blogel.

We used “default” code provided by the systems when available, and made our best

efforts to develop “optimal” algorithms otherwise; the code is available at [GRA]

for interested reader. As GraphLab supports both synchronized and asynchronized

models [LBG+12], we implemented synchronized algorithms for both GraphLab and

Giraph for the ease of comparison. We expect the observed relative performance trends

to hold on other similar graph systems.
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We deployed the systems on Aliyun ECS n2.large instances [ali], each powered by

an Intel Xeon processor with 2.5GHz and 16G memory. We used up to 24 instances.

We used ECS since its average inter-connection speed is close to real-life large-scale

distributed systems. Each experiment was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency and Communication. We first evaluated the efficiency and com-

munication of GRAPE over real-life graphs by varying the number n of processors

used, from 4 to 24. We compared its performance with Giraph, GraphLab and Blogel.

For SSSP and CC, we experimented with all three real-life datasets. For Sim and

SubIso, we evaluated the queries over liveJournal and DBpedia, since these queries are

meaningful on labeled graphs only, while traffic does not carry labels.

(1) SSSP. Figures 2.6(a)-2.6(e) report the performance of the systems for SSSP over

traffic, liveJournal and DBpedia, respectively. From the results we can see the follow-

ing.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 964, 818 and 22 times, re-

spectively, over traffic with 24 processors (Fig 2.6(a)). In the same setting, it is 2.5, 2.2

and 1.1 times faster over liveJournal (Fig. 2.6(c)), and 6.2, 3.4 and 1.2 times faster over

DBpedia (Fig. 2.6(e)). By simply parallelizing sequential algorithms without further

optimization, GRAPE is comparable to the state-of-the-art systems in response time.

Note that the improvement of GRAPE over Giraph and GraphLab on traffic is much

larger than on liveJournal and DBpedia. This is because vertex-centric algorithms take

more supersteps to converge on graphs with large diameters, e.g., traffic. Giraph takes

10752 supersteps over traffic, while 18 over liveJournal; similarly for GraphLab. In

contrast, GRAPE is not vertex-centric and is more robust; it takes 18 supersteps on

traffic and 10 on liveJournal.

(b) All systems take less time when n increases, and GRAPE scales well with n. The

speedup of GRAPE compared to Giraph and GraphLab becomes larger when more

processors are used; e.g., GRAPE is 818 times faster than Giraph with 4 processors,

and is 964 times faster with 24 processors. On average, GRAPE is 4 times faster for

n from 4 to 24, while it is 3 times for Giraph, 3.2 times for GraphLab and 5 times for

Blogel. These verify the parallel scalability of GRAPE.

(c) GRAPE ships on average 9∗10−6%, 6.4% and 0.05% of the data shipped by Giraph,
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Figure 2.6: Performance evaluation of SSSP

9∗10−6%, 6.4% and 0.05% of GraphLab, and 3.5∗10−4%, 24% and 0.94% of Blogel,

over traffic, liveJournal and DBpedia, respectively.

Figures 2.6(b)-2.6(f) show that both GRAPE and Blogel incurs communication

costs that are orders of magnitudes smaller than those of GraphLab and Giraph (whose

curves coincide). For instance, GRAPE ships 0.07% of the data shipped by GraphLab

(same for Giraph) on DBpedia. This is because vertex-centric programming incurs a

large number of inter-vertex messages. Both block-centric programs (Blogel) and PIE

programs (GRAPE) effectively reduce unnecessary messages, and trigger inter-block

messages only when necessary. We also observe that GRAPE ships 30% and 0.9% of

the data shipped by Blogel over liveJournal and DBpedia, respectively. This is because

GRAPE ships only updated values under monotonic condition. The improvement over
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Blogel on traffic is not substantial because the road network has a small average node

degree, and hence imposes a smaller bound (worst-case data shipment) on the improve-

ment of GRAPE over Blogel.

In particular, GRAPE significantly reduces supersteps. It takes on average 12 super-

steps, while Giraph, GraphLab and Blogel take 10752, 10752 and 1673 supersteps, re-

spectively. This is because GRAPE runs sequential algorithms over fragmented graphs,

and triggers cross-fragment communication only when necessary; moreover, IncEval

ships only changes to status variable, which are updated monotonically (Theorem 1).

In contrast, Giraph, GraphLab and Blogel pass vertex-vertex (vertex-block) messages

as required by recasted programs.

(2) CC. Figures 2.7(a)-2.7(c) report the performance for CC detection, and tell us the

following. (a) Both GRAPE and Blogel substantially outperform Giraph and GraphLab.

For instance, when n = 24, GRAPE is on average 4.4 and 4.0 times faster than Giraph

and GraphLab, respectively. (b) Blogel is faster than GRAPE, e.g., 0.05s vs. 1.6s over

liveJournal when n = 24. This is because Blogel embeds the computation of CCs in

its graph partition phase as precomputation, while the partitioning cost (on average

16.2 seconds) is not included in the response time of Blogel. In other words, without

precomputation, the performance of GRAPE is already comparable to the near “opti-

mal” case reported by Blogel that is run over graphs already partitioned into connected

components. (c) GRAPE incurs only 4.8% of communication cost of both Giraph and

GraphLab on average, and is comparable to that of the near “optimal” case of Blogel.

Figures 2.7(b)-2.7(f) demonstrate similar improvement of GRAPE over GraphLab

and Giraph for CC, e.g., on average GRAPE ships 5.4% of the data shipped by Giraph

and GraphLab. Blogel is slightly better than GRAPE. As remarked in Section 2.6 for

Exp-1(2), this is because Blogel precomputes CCs of graphs when partitioning and

loading the graphs, and thus already recognizes connected components by using an

internal partition strategy. While a fair comparison should include the time for pre-

computing CCs in the evaluation time of CC by Blogel, we cannot identify the com-

munication cost saved by its preprocessing. Thus, the reported communication cost

of Blogel is almost 0 in all cases. Nonetheless, GRAPE incurs communication cost

comparable to the near “optimal” case reported by Blogel, when Blogel operates on a

graph that is already partitioned as CCs.

(3) Sim. Fixing |Q| = (8,15), i.e., patterns Q with 8 nodes and 15 edges, we evalu-

ated matching via graph simulation over liveJournal and DBpedia. As shown in Fig-
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(d) Varying n: CC (liveJournal)
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(e) Varying n: CC (DBpedia)
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(f) Varying n: CC (DBpedia)

Figure 2.7: Performance evaluation of CC

ures 2.8(a)-2.8(c), (a) GRAPE consistently outperforms Giraph, GraphLab and Blogel

over all queries. It is 2.5, 2.7 and 1.3 times faster over liveJournal, and 3.2, 2.8 and 1.7

times faster over DBpedia on average, respectively, when n = 24. (b) GRAPE scales

better with the number n of processors than Giraph and GraphLab, and is comparable

to Blogel in parallel scalability. (c) GRAPE ships 2.2%, 2.2% and 2.3% (liveJournal),

and 0.45%, 0.45% and 0.9% (DBpedia) of the data shipped by Giraph, GraphLab and

Blogel on average, respectively, when n = 24.

Figures 2.8(b) and 2.8(d) report the communication cost for graph simulation over

liveJournal and DBpedia, respectively. One can see that GRAPE ships substantially less

data, e.g., on average 1.3%, 1.3% and 1.6% of the data shipped by Giraph, GraphLab

and Blogel, respectively. Observe that here the communication cost of Blogel is much
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(a) Varying n: Sim (liveJournal)
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(b) Varying n: Sim (liveJournal)
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(c) Varying n: Sim (DBpedia)
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(d) Varying n: Sim (DBpedia)

Figure 2.8: Performance evaluation of Sim

higher than that of GRAPE, even though Blogel adopts inter-block communication.

This shows that the extension of vertex-centric to block-centric by Blogel does not

help much on more complex queries. GRAPE works better than vertex-centric and

block-centric systems on complex queries, by employing incremental IncEval to reduce

excessive messages.

In particular, GRAPE takes at most 6 supersteps to terminate, while Giraph, GraphLab

and Blogel take 7, 8 and 10 supersteps, respectively. This again empirically validates

Theorem 1, which allows us to monotonically update status variables.

(4) SubIso. Fixing |Q|=(6,10), we evaluated subgraph isomorphism. As shown in Fig-

ures 2.9(a)-2.9(c) over liveJournal and DBpedia, respectively, (a) GRAPE is on average

1.86, 1.49 and 1.98 times faster than Giraph, GraphLab and Blogel, respectively, when

n= 24. (b) GRAPE does well over all queries tested. It takes 2 supersteps and 38.9 sec-

onds on average, while Giraph, GraphLab and Blogel take 62.4, 54.3 and 64.5 seconds

and 4, 4 and 6 supersteps, respectively. (c) GRAPE scales well with the number n of

processors. (d) GRAPE incurs on average 5.9%, 5.9% and 8.4% of the communication

cost of Giraph, GraphLab and Blogel, respectively, when n = 24.
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(a) Varying n:SubIso(liveJournal)
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(b) Varying n:SubIso(liveJournal)
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(c) Varying n: SubIso (DBpedia)
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(d) Varying n: SubIso (DBpedia)

Figure 2.9: Performance evaluation of SubIso

Figures 2.9(b) and 2.9(d) report the results for SubIso over liveJournal and DBpedia,

respectively. The results are consistent with Sim queries. On average, GRAPE ships

4.7%, 4.7%, and 6.5% of the data shipped by Giraph, GraphLab and Blogel, respec-

tively. Due to the locality of subgraph isomorphism, matches to a pattern are confined

in connected blocks. Hence Blogel takes advantage of its CC preserving graph parti-

tion, and does better than the case for Sim. Nevertheless, GRAPE only ships 6.5% of

the data shipped by Blogel on average, and outperforms Blogel.

(5) Collaborative filtering (CF). For CF, we used movieLens [mov] with two training

sets, compared with the built-in SGD-based CF in Giraph and GraphLab, and CF im-

plemented for Blogel. We calibrated the termination condition of all the systems as the

convergence point when the root-mean-square error of predicted ratings is less than a

threshold.

We first tested training set |ET | = 90% |E|. Note that CF favors “vertex-centric”

programming since each user or product node only needs to exchanges data with their

neighbors, as indicated by that GraphLab and Giraph outperform Blogel. Nonetheless,

as shown in Fig. 2.10(a), GRAPE is on average 1.6, 1.1 and 3.4 times faster than Giraph,
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(a) Varying n: CF(|ET |=90%|E|)
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(b) Varying n: CF(|ET |=90%|E|)
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(c) Varying n: CF(|ET |=50%|E|)
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Figure 2.10: Performance evaluation of CF

GraphLab and Blogel, respectively, when the number n of processors varies from 4 to

24. It scales well with n. In addition, it ships on average 9.2%, 9.2% and 10.2% of

data shipped by Giraph, GraphLab and Blogel, respectively.

We also tested smaller training set (|ET | = 50% |E|). Figure 2.10(c) shows that

GRAPE outperforms Blogel and Giraph, and is comparable with GraphLab. It ships at

most 11.6% of data shipped by Giraph, GraphLab and Blogel.

Figures 2.10(b) and 2.10(d) report the results for CF over movieLens, with 90%

and 50% training set ET , respectively. On average, GRAPE ships 9.2%, 9.2%, and

10.3% of the data shipped by Giraph, GraphLab and Blogel, respectively, for |ET | =

90% |E|; and 7.6%, 7.6%, and 8.0% for |ET | = 50% |E|. This verifies that GRAPE

is effective in reducing the communication cost of CF even for algorithms that favor

vertex-centric programming. It also shows that GRAPE remains effective when the

amount of training data varies.

Exp-2. Scalability.

We also evaluated the scalability of GRAPE over larger synthetic graphs. We de-

veloped a generator to produce graphs G = (V,E,L) with L drawn from an alphabet L
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(d) Varying |G|: SSSP

Figure 2.11: Scalability on synthetic graphs

of 50 labels. It is controlled by the numbers of nodes |V | and edges |E|, up to 50M and

200M, respectively.

Fixing n = 24, we varied |G| from (10M,40M) to (50M,200M). As reported in

Fig. 2.11, we tested SSSP, CC, Sim and SubIso; as the “true” behavior of CF is better

characterized by real-world data, we omit the performance of CF over the synthetic

data. The results are consistent with Fig. 5.6 over real-life graphs. (a) All systems take

longer when G gets larger, as expected. (b) GRAPE scales reasonably well with the

increase of |G|. With |G| increased by 5 times, the running time of GRAPE increases

by 7 times, 2.7 times, 6 times and 12 times, for SSSP (with linear time sequential

algorithm), CC (linear time), Sim (quadratic time) and SubIso (exponential time), re-

spectively. (c) GRAPE consistently outperforms Giraph and GraphLab for all queries,

by 2.1 and 1.5 times for SSSP, 5.3 and 4.6 times for CC, 3 and 2.4 times for Sim, and

1.7 and 1.4 times for SubIso. The gap for SSSP is smaller than it on traffic, due to the

special features of traffic mentioned earlier. GRAPE is 1.1 times faster than Blogel for

SSSP, 1.3 for Sim, and 1.3 for SubIso. Blogel does better than GRAPE on CC for the

reasons given above.
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Figure 2.12: Incremental steps and optimization

Exp-3: Incremental computation. We evaluated the effectiveness of incremental

IncEval. We implemented a batch version of GRAPE for Sim queries, denoted as

GRAPENI, which uses PEval to perform iterative computations and handle the mes-

sages, instead of IncEval. It mimics the case when no incremental computation is used.

As shown in Fig. 2.12 over liveJournal, (1) GRAPE outperforms GRAPENI by 2.1 times

with 24 processors; and (2) the gap is larger when less workers are employed, e.g., 3.4

times when 4 processors are used. This is because the less workers are used, the larger

fragments reside at each worker, and as a consequence, heavier computation costs are

incurred at each superstep. This verifies that incremental steps effectively reduces re-

dundant local computations in iterative graph computations. The results on DBpedia

are consistent and are not shown.

Exp-4. Compatibility. We also evaluated the compatibility of optimization strategies

developed for sequential graph algorithms with GRAPE parallelization.

For a query class Q , a sequential algorithm A and its optimized version A∗ for Q ,

denote the speedup of the optimization as T (A)
T (A∗) . Denote the running time of GRAPE

parallelization of A (resp. A∗) as Tp(A) (resp. Tp(A∗)) for a given number n of work-

ers. Ideally, T (A)
T (A∗) should be close to Tp(A)

Tp(A∗) , i.e., GRAPE preserves the speedup from

the optimization. That is, the impact of the optimization is not “dampened out” by

parallelization overhead such as synchronization and message passing.

We make a case for graph simulation. We evaluated two sequential algorithms, one

from [HHK95], and the other is an optimized version that employs indices to reduce

candidates [FLM+10]. Using Sim queries over liveJournal, we found that the average

speedup of sequential algorithms is 2.7. Varying n from 4 to 24, we report the speedup

of the parallelized algorithms of GRAPE in Fig. 2.12(b). The result on DBpedia are
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consistent (not shown). The results suggest that the speedup is close to its sequential

counterpart. Such optimization cannot be easily encoded in vertex programs of Giraph

and GraphLab and the V-mode and B-mode programs of Blogel.

Exp-5: Ease of programming. We also inspected the usability of GRAPE. Taking

SSSP as an example, we examined (a) vertex-centric programs for Giraph (similarly

for GraphLab), and (b) block-centric programs for Blogel. Parts of the Giraph and

Blogel algorithms are shown in Figures 2.13 and 2.14, respectively. We adopt the

Giraph code taken from [MAB+10], and use the Blogel code from its developers.

Comparing these programs with their GRAPE counterpart (Figures 2.2 and 2.3),

we find the following.

class ShortestPathVertex (Vertex<int, int, int>) {
void Compute (MessageIterator msgs) {

int mindist = IsSource(vertex id) ? 0 : INF;

while (msgs not empty)

mindist = min(mindist, msgs.GetValue());

if (mindist < GetValue())

MutableValue() = mindist;

OutEdgeIterator iter = GetOutEdgeIterator();

while (iter not empty)

SendMessageTo(iter.Target(), GetValue() + iter.GetValue());

VoteToHalt(); }}

Figure 2.13: Giraph vertex program for SSSP

(1) The vertex program for Giraph requires substantial changes to its corresponding

sequential algorithm. As shown in Fig. 2.13, the logic flow of a Giraph program for

SSSP is quite different from that of a sequential SSSP algorithm. Writing such pro-

grams requires users to have prior knowledge about the query classes and the design

principle of the vertex-centric model. Moreover, it is challenging to integrate graph-

level optimization, e.g., incremental evaluation, into the vertex programming model.

In contrast, the logic flow of PIE algorithms (GRAPE) remains the same as those se-

quential algorithms adapted for PEval and IncEval.
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void VCompute(Messages) { /*V-mode computing*/

1. if ( step == 1) {
2. · · · /* initialize source distance, vote to halt otherwise */}
3. else { for (msg : Messages) {
4. · · · /* update local distance with minimum one in Messages*/ }}
void BCompute(Messages, Container) {/*B-mode computing*/

1. for (vertex : Container) {
2. if (vertex.isactive()) { heap.add(vertex); }}
3. while (heap.size > 0) { /*recasted Dijkstra’s algorithm*/

4. u = heap.peek(); edges = u.value().edges; split = u.value().split;

5. for (edge : edges[0...split]) {
6. · · · /* invokes V-mode computing for each in-block node*/}
7. for (edge : edges[split...edge.size()]){
8. · · · /* out-block msg passing */ } } }
9. voteToHalt(); }

Figure 2.14: Blogel block program for SSSP

Similar to Giraph, GraphLab code for SSSP (not shown) requires users to recast the

sequential SSSP algorithm into vertex programs. For example, a sequential operation

in an SSSP algorithm that “collects the distances from the neighbors of a node and up-

dates the distances” is broken down to two core functions as follows: (a) the “Apply”

function updates the local distance at each vertex; and (b) the “Scatter” function prop-

agates the updated value to the neighbors of a node. In contrast, a GRAPE program

keeps the integrity of this operation for all the nodes within a fragment.

(2) While Blogel supports block-centric computation, it also requires recasting of se-

quential algorithms, as shown in Fig. 2.14. Indeed, Blogel programming extends

vertex-centric algorithms (e.g., Giraph) by treating each block as a “virtual vertex”,

while still retaining the same message passing strategies for blocks as in the vertex-

centric algorithms. Hence, its logic flow is along the same lines as Giraph algorithms,

and requires recasting of sequential algorithms.

Remark. The partitioning strategy does not affect the correctness: the Theorem 1
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holds regardless any partitioning strategy, i.e.,GRAPE guarantees the termination and

correctness if the sequential algorithms provided are correct and monotonic; there is

no requirement on the partitioning strategy.

When it comes to efficient, the choice of different partitioning strategies has impact

on some algorithms, especially on algorithms with the data locality, such as subgraph

isomorphism. In this Chapter, we use pre-fetch to ensure the locality for the SubIso

algorithm. In other Chapters, one may find some more complicated and carefully

designed partitioning strategies employed to maximize the benefits from the locality

with a property named parallel scalability.

Nonetheless, for most algorithms, like SSSP and CC, an arbitrary partitioning strat-

egy would warrant good performance, e.g., edge-cut, as long as it minimizes the num-

ber of crossing edge as usual. All the experiments in Chapter 2 used this setting. Since

other platforms are based on the vertex-centric model, they do not support fragment-

based partitioning. We employed their default partitioning for a fair comparison. i.e.,

2D-partition for GraphLab and Giraph, Voronoi partitioner for Blogel.

Summary. We find the following. (1) By plugging in sequential algorithms, GRAPE

performs comparably to state-of-the-art systems. Over real-life graphs and using from

4 to 24 processors, GRAPE is on average 323, 274 and 7.9 times faster than Giraph,

GraphLab and Blogel for SSSP, 2.7, 2.6 and 1.7 for Sim, 1.7, 1.4 and 1.7 for SubIso,

and 1.9, 1.4 and 3.8 for CF, respectively. For CC, it is 3.9 and 3.8 times faster than

Giraph and GraphLab, respectively, and is comparable to the “optimal” case of Blogel.

The results on synthetic graphs are consistent. (2) Better still, GRAPE ships on average

5.6%, 5.6% and 10% of the data shipped by Giraph, GraphLab and Blogel for SSSP,

1.3%, 1.3% and 1.6% for Sim, 4.7%, 4.7% and 6.5% for SubIso, and 8.1%, 8.1% and

8.7% for CF, respectively, in the same setting. For CC, it incurs 7.3% and 7.3% of data

shipment of Giraph and GraphLab, and is comparable with “optimized” Blogel. (3)

Incremental steps effectively reduce iterative recomputation. For Sim, it improves the

response time by 2.6 times on average. (4) GRAPE inherits the benefit of optimized

sequential algorithms. For Sim, it is on average 2 times faster by using the algorithm

of [FLM+10] instead of [HHK95].
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2.7 Related Work

The related work of this chapter is categorized as follows.

Parallel models and systems. Several parallel models have been studied for graphs,

e.g., PRAM [Val91], BSP [Val90] and MapReduce [DG08]. PRAM abstracts paral-

lel RAM access over shared memory. BSP models parallel computations in super-

steps (including local computation, communication and a synchronization barrier) to

synchronize communication among workers. Pregel [MAB+10] (Giraph [Ave11]) im-

plements BSP with vertex-centric programming, where a superstep executes a user-

defined function at each vertex in parallel. GraphLab [LBG+12] revises BSP to pass

messages asynchronously. Block-centric models [TBC+13, YCLN14] extend vertex-

centric programming to blocks, to exchange messages among blocks.

Popular graph systems also include GraphX [XGFS13], GRACE [WXDG13], GPS

[SW13], Trinity [SWL12], etc. GraphX [GXD+14] recasts graph computation in its

distributed dataflow framework as a sequence of join and group-by stages punctuated

by map operations over Spark platform. GRACE [WXDG13] provides an operator-

level, iterative programming model to enhance synchronous BSP with asynchronous

execution. GPS [SW13] implements Pregel with extended APIs and partition strate-

gies. All these systems require recasting of sequential algorithms.

GRAPE adopts the synchronization mechanism of BSP. As opposed to the prior

systems, (a) GRAPE aims to parallelize existing sequential algorithms, by combin-

ing partial evaluation and incremental computation. (b) As opposed to MapReduce, it

highlights data-partitioned parallelism via graph fragmentation. For iterative compu-

tations, it does not need to ship the entire state of the graphs in each round [MAB+10].

(c) The vertex-centric model of Pregel (synchronized) is a special case of GRAPE,

when each fragment is limited to a single vertex. The communications of Pregel are

via “inter-processor” messages, and a message from a node often has to go through

several supersteps to reach another node. GRAPE reduces excessive messages and

scheduling cost of Pregel, since communications within the same fragment are local.

GRAPE also facilitates graph-level optimizations that are hard to implement in vertex-

centric systems; similarly for GraphLab (asynchronized). (d) Closer to GRAPE are

block-centric models [TBC+13, YCLN14]. However, the programming interface of

[TBC+13] is still vertex-centric, and [YCLN14] is a mix of vertex-centric and block-

centric programming (V-compute and B-compute). The B-compute interface is essen-

tially vertex-centric programming, by treating each block as a vertex. Users have to
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recast existing sequential algorithms into a new model. In contrast, GRAPE “plugs

in” sequential algorithms PEval and IncEval from GRAPE library, and applies them

to blocks without recasting. None of the prior systems uses (bounded) incremental

steps to speed up iterative computations. No one provides assurance on termination

and correctness of parallel graph computations.

Partial evaluation has been studied for certain XML [BCFK06] and graph queries

[FWWD14]. There has also been a host of work on incremental graph computation

(e.g., [RR96b, FWWD14]). This work makes a first effort to provide a uniform model

by combining partial evaluation and incremental computation together, to parallelize

sequential graph algorithms as a whole.

Parallelization of graph computations. A number of graph algorithms have been de-

veloped in MapReduce, vertex-centric models and others [YCX+14, FWWD14]. In

contrast, GRAPE aims to parallelize existing sequential graph algorithms, without re-

vising their logic and work flow. Moreover, parallel algorithms for MapReduce, BSP

(vertex-centric or not) and PRAM can be easily migrated to GRAPE (Section 2.3.2).

Prior work on automated parallelization has focused on the instruction or opera-

tor level [RMM15, PNK+11] by breaking dependencies via symbolic and automata

analyses. There has also been work at data partition level [ZLL+15], to perform multi-

level partition (“parallel abstraction”) and enable locality-optimized access to adapt to

different parallel abstraction.

In contrast, GRAPE aims to parallelize sequential algorithms as a whole. It is to

make parallel computation accessible to end users, while [RMM15, PNK+11, ZLL+15]

target experienced developers of parallel algorithms. There have also been tools for

translating imperative code to MapReduce, e.g., word count [RFRS14]. GRAPE advo-

cates a different approach, by parallelizing the runs of sequential graph algorithms to

benefit from data-partitioned parallelism, without translation. This said, the techniques

of [RFRS14, RMM15, PNK+11, ZLL+15] are complementary to GRAPE.

Simulation results. Prior work has mostly focused on simulations between variants

of PRAM with different memory management strategies, to characterize bounds of

slowdown for deterministic or randomized solutions [Har94]. There has also been

recent work on simulation of PRAM on MapReduce and BSP [KSV10]. We present

optimal deterministic simulation results of MapReduce, BSP and PRAM on GRAPE,

adopting the notion of optimal simulations of [Val91].
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2.8 Summary

In this chapter, We have given the design and framework of GRAPE. we proposed an

approach to parallelizing sequential graph algorithms. For a class of graph queries,

users can plug in existing sequential algorithms with minor changes. GRAPE paral-

lelization guarantees to terminate with correct answers under a monotonic condition if

the sequential algorithms are correct. Moreover, we prove that graph algorithms for ex-

isting parallel graph systems can be migrated to GRAPE, without incurring extra cost.

We have verified that GRAPE achieves comparable performance to the state-of-the-art

graph systems for various query classes, and that (bounded) IncEval reduces the cost

of iterative graph computations.



Chapter 3

Association Rules Discovery on

GRAPE

We presented the framework of GRAPE and showed that many classes of graph com-

putations work well on it. However, real life graph applications are usually far more

complicated. GRAPE has the flexibility to resolve these problems as well.

In this chapter, we propose an application, association rules with graph patterns,

targeting on discovering regularities between entities on the social networks. As will be

seen in this chapter, we study the top-k discovery problem and identifying the potential

customers problem with association rules with graph patterns. While they are both NP-

hard problems, we develop parallel algorithms on GRAPE with accuracy bound.

58
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Association rules have been well studied for discovering regularities between items

in relational data, for promotional pricing and product placements [AIS93, YDCL06].

They have a traditional form X ⇒ Y , where X and Y are disjoint itemsets.

There have been recent interests in studying associations between entities in social

graphs. Such associations are useful in social media marketing; indeed, “90% of cus-

tomers trust peer recommendations versus 14% who trust advertising”[tru], and “60%

of users said Twitter plays an important role in their shopping” [Smi13]. Nonetheless,

association rules for social graphs are more involved than rules for itemsets.

Example 4: (1) Association rules for social graphs are defined on graphs rather on

itemsets. Below is an example.

• If (a) x and x′ are friends living in the same city c, (b) there are at least 3 French

restaurants in c that x and x′ both like, and if (c) x′ visits a newly opened French

restaurant y in c, then x may also visit y.

The antecedent of the rule can be represented as a graph pattern Q1 (with solid

edges) shown in Fig. 3.1(a), and the consequent is indicated by a dotted edge visit(x,y).

A succinct presentation of Q1 associates integer 3 with “French Restaurant” to indicate

its 3 copies. As opposed to conventional association rules, Q1 specifies conditions

as topological constraints: edges between customers (the friend relation), customers

and restaurants (like, visit), city and restaurants (in), and between city and customers

(live in). In a social graph G, for x and y satisfying the antecedent Q1 via graph pattern

matching, we can recommend y to x.

(2) As opposed to rules for itemsets, association rules for social graphs may target

social groups with multiple entities:

• If (a) x, x1 and x2 are friends, (b) they all live in Ecuador, and (c) if x1, x2 both

like Shakira’s album y (a Colombian singer), then x may also like y.

This rule is depicted in Fig. 3.1(b), in which a graph pattern Q2 (excluding the

dotted edge) specifies conditions for (x,y) as antecedent, and dotted edge like(x,y)

indicates its consequent. We can use the rule to identify potential customers x of y,

characterized by a social group of three members.

(3) Association rules with graph patterns conveniently extend data dependencies such

as conditional functional dependencies (CFDs) [FGJK08] in the context of social net-

works.
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Figure 3.1: Associations as graph patterns

• If the addresses of x and x′ have the same country code “44” and same zip code,

and if x′ shops at a Tesco store y with the same zip, then x may also shop at y.

Such a rule (Fig. 3.1(c)) embeds a corresponding CFD in its pattern Q3, stating that

if x and x′ live in the UK with the same zip code, then they live on the same street. The

rule is valid in the UK where zip code determines street.

(4) The applications of association rules are not limited to marketing activities. They

also help us detect scams. As an example, the rule below is used to identify fake

accounts [CSYP12].

• If (a) account x′ is confirmed fake, (b) both x and x′ like blogs P1, . . . ,Pk, (c) x

posts blog y1, (d) x′ posts y2, and (e) if y1 and y2 contain the same particular

content (keyword), then x is likely a fake account.

As depicted in Fig. 3.1(d), its antecedent is given by graph pattern Q4 (excluding

the dotted edge), and its consequent is the dotted edge is a(x, fake). In a social graph

G, the rule is to identify suspects for fake accounts, i.e., accounts x that satisfy the

structural constraints of pattern Q4. 2

The need for graph-pattern association rules (GPARs) is evident in social media

marketing, community structure analysis, social recommendation, knowledge extrac-
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tion and link prediction [LZ11]. Such rules, however, depart from association rules for

itemsets, and introduce several challenges. (1) Conventional support and confidence

metrics no longer work for GPARs. (2) Mining algorithms for traditional rules and

frequent graph patterns cannot be used to discover practical diversified GPARs. (3) A

major application of GPARs is to identify potential customers in social graphs. This

is costly: graph pattern matching by subgraph isomorphism is intractable. Worse still,

real-life social graphs are often big, e.g., Facebook has 13.1 billion nodes and 1 trillion

links [UKBM11].
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3.1 Association via Graph Patterns

In this section we define graph-pattern association rules.

3.1.1 Graphs, Patterns, and Pattern Matching

We first review the notions of graphs and graph patterns.

Graphs. A graph is defined as G = (V,E,L), where (1) V is a finite set of nodes; (2)

E ⊆V ×V is a set of edges, in which (v,v′) denotes an edge from node v to v′; (3) each

node v in V (resp. edge e) carries L(v) (resp. L(e)), indicating its label or content e.g.,

cust, French restaurant, 44 (resp. post, like), as found in social networks and property

graphs.

Example 5: Two graphs G1 and G2 are shown in Fig. 3.2. (1) Graph G1 depicts

a restaurant recommendation network. For instance, cust1 and cust2 (labeled cust)

live in New York; they share common interests in 3 French restaurants (marked with

superscript 3 for simplicity); and they both visit a newly opened French restaurant “Le

Bernadin” in New York. (2) Graph G2 shows activities of social accounts. It contains

(a) accounts acct1, . . . , acct4 (labeled acct), (b) blogs p1, . . . , p7; and (c) edges from

accounts to blogs. For example, edge post(acct1, p1) means that account acct1 posts

blog p1, which contains keyword w1 “claim a prize”. 2

Patterns. A pattern query Q is a graph (Vp,Ep, f ,C), in which Vp and Ep are the set

of pattern nodes and edges, respectively; each node up in Vp (resp. edge ep in Ep) has

a label f (up) (resp. f (ep)) specifying a search condition, e.g., city, or “44” for value

binding (Q3 of Example 4). For succinct representation, a node up can be labeled with

an integer C(up) = k, indicating k copies of up with the same label and associated links

in the common neighborhood.

Graph pattern matching. We first review two notions of subgraphs. (1) A graph

G′ = (V ′,E ′,L′) is a subgraph of G = (V,E,L), denoted by G′ ⊆G, if V ′ ⊆V , E ′ ⊆ E,

and moreover, for each edge e ∈ E ′, L′(e) = L(e), and for each v ∈ V ′, L′(v) = L(v).

(2) We say that G′ is a subgraph induced by a set V ′ of nodes if G′ ⊆G and E ′ consists

of all those edges in G whose endpoints are both in V ′.

We adopt subgraph isomorphism for pattern matching. A match of pattern Q in

graph G is a bijective function h from the nodes of Q to the nodes of a subgraph G′ of

G such that (a) for each node u ∈Vp, f (u) = L(h(u)), and (b) (u,u′) is an edge in Q if
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Figure 3.2: Labeled social graphs

and only if (h(u),h(u′)) is an edge in G′, and f (u,u′) = L(h(u),h(u′)). We say that G′

matches Q.

Note that similarity predicates can be used instead of equality “=” with no impact

on our algorithms.

We denote by Q(G) the set of all matches of Q in G. For each pattern node u,

we use Q(u,G) to denote the set of all matches of u in Q(G), i.e., Q(u,G) consists of

nodes v in G such that there exists a function h under which a subgraph G′ ∈ Q(G) is

isomorphic to Q, v ∈ G′ and h(u) = v.

Example 6: For Q1 of Fig. 3.1 and G1 of Fig. 3.2, a match in Q1(G) is x 7→ cust1,

x′ 7→ cust2, city 7→ New York, y 7→ Le Bernardin, and French restaurant3 to 3 French

restaurants. Here Q1(x,G1) includes cust1–cust3 and cust5.

2

A pattern Q′ = (V ′p,E
′
p, f ′,C′) is subsumed by another pattern Q = (Vp,Ep, f ,C),

denoted by Q′ v Q, if (V ′p,E
′
p) is a subgraph of (Vp,Ep), and functions f ′ and C′ are

restrictions of f and C in V , respectively. Observe that if Q′ v Q, then for any graph

G′ that matches Q, there exists a subgraph G′′ of G′ such that G′′ matches Q′.

We will use the following notations. (1) For a pattern Q and a node x in Q, the

radius of Q at x, denoted by r(Q,x), is the longest distance from x to all nodes in Q
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when Q is treated as an undirected graph.

(2) Pattern Q is connected if for each pair of nodes in Q, there exists an undirected

path in Q between them. (3) For a node vx in a graph G and a positive integer r, Nr(vx)

denotes the set of all nodes in G within radius r of vx. (4) The size |G| of G is |V |+ |E|,
the number of nodes and edges in G. (5) Node v′ is a descendant of v if there is a

directed path from v to v′ in G.

3.1.2 Graph Pattern Association Rules

We now define graph-pattern association rules.

GPARs. A graph-pattern association rule (GPAR) R(x,y) is defined as Q(x,y) ⇒
q(x,y), where Q(x,y) is a graph pattern in which x and y are two designated nodes,

and q(x,y) is an edge labeled q from x to y, on which the same search conditions as in

Q are imposed. We refer to Q and q as the antecedent and consequent of R, respec-

tively.

The rule states that for all nodes vx and vy in a (social) graph G, if there exists a

match h ∈ Q(G) such that h(x) = vx and h(y) = vy, i.e., vx and vy match the desig-

nated nodes x and y in Q, respectively, then the consequent q(vx,vy) will likely hold.

Intuitively, vx is a potential customer of vy.

We model R(x,y) as a graph pattern PR, by extending Q with a (dotted) edge

q(x,y). We refer to pattern PR as R when it is clear from the context. We treat q(x,y)

as pattern Pq, and q(x,G) as the set of matches of x in G by Pq.

We consider practical and nontrivial GPARs by requiring that (1) PR is connected;

(2) Q is nonempty, i.e., it has at least one edge; and (3) q(x,y) does not appear in Q.

Example 7: Recall the first association rule described in Example 4. It can be ex-

pressed as a GPAR R1(x,y): Q1(x,y)⇒ visit(x,y), where its antecedent is the pattern

Q1 given in Example 4, and its consequent is visit(x,y). The GPAR can be depicted as

the graph pattern of Fig. 3.1(a), by extending Q1(x,y) with a dotted edge for visit(x,y).

The last rule of Example 4 is written as R4(x,y): Q4(x,y) ⇒ is a(x,y), where in

Q4, y = fake is a value binding. The GPAR is depicted as the pattern of Fig. 3.1(d). In

is a(x,y), the same search condition y = fake is imposed. 2

Remark. (1) To simplify the discussion, we define the consequent of GPAR with

a single predicate q(x,y) following [AIS93]. However, a consequent can be readily

extended to multiple predicates and even to a graph pattern. (2) Conventional associ-
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ation rules [AIS93] and a range of predication and classification rules [RVDB04] are

a special case of GPARs, since their antecedents can be modeled as a graph pattern in

which nodes denote items. Conditional functional dependencies [FGJK08] can also be

represented by GPARs (see Q3 of Fig. 3.1(c)).
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3.2 Support and Confidence

We next define support and confidence for GPARs.

Support. The support of a graph pattern Q in a graph G, denoted by supp(Q,G),

indicates how often Q is applicable. As for association rules for itemsets, the support

measure should be anti-monotonic, i.e., for patterns Q and Q′, if Q′ v Q, then in any

graph G, supp(Q′,G)≥ supp(Q,G).

One may want to define supp(Q,G) as the number ||Q(G)|| of matches of Q in

Q(G), following its counterpart for itemsets [ZZ02]. However, as observed in [BN08,

EASK14, JCZ13], this conventional notion is not anti-monotonic. For example, con-

sider pattern Q′ with a single node labeled cust, and Q with a single edge like(cust,French

restaurant). When posed on G1, ||Q(G)|| = 18> ||Q′(G)|| = 6 (since French restaurant3

denotes 3 nodes labeled French restaurant), although Q′ v Q.

To cope with this, we revise the support measure proposed in [BN08]. We define

the support of the designated node x of Q as ||Q(x,G)||, i.e., the number of distinct

matches of x in Q(G). We define the support of Q in G as

supp(Q,G) = ||Q(x,G)||.

One can verify that this support measure is anti-monotonic.

For a GPAR R(x,y): Q(x,y)⇒ q(x,y), we define

supp(R,G) = ||PR(x,G)||,

by treating R as pattern PR(x,y) with designated nodes x,y.

Example 8: For GPAR R1(x,y): Q1(x,y)⇒ visit(x,y) of Example 7 and graph G1

of Fig 3.2, (1) ||Q1(x,G1)|| = 4 (see Example 6); hence supp(Q1,G1) is 4; and (2)

supp(R1,G1) = ||PR1(x,G1)|| = 3, where x has 3 matches cust1–cust3.

Similarly, consider R4(x,y): Q4(x,y)⇒ is a(x,y) of Example 7 and graph G2 in

Fig 3.2, where y = fake. When k = 2, supp(R4,G2) = supp(Q4,G2) = ||Q4(x,G2)|| = 3,

with matches acct1–acct3 for the designated node x in Q4. 2

Confidence. To find how likely q(x,y) holds when x and y satisfy the constraints of

Q(x,y), we study the confidence of R(x,y) in G, denoted as conf(R,G). One may want

to adopt the conventional confidence for association rules, and define conf(R,G) as
supp(R,G)
supp(Q,G) . That is, every match x in Q but not in R is considered as negative example

for R. However, as observed in [GTHS13, Don14], the standard confidence is blind
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to the distinction between “negative” and “unknown”. This is particularly an overkill

when G is incomplete [Don14, MZL12].

Example 9: Consider pattern Q2 in Fig. 3.1(b). Let Q2(x,G) contain three matches

v1,v2,v3 of x1, x2,x3 in a social graph G, all living in Ecuador, where (1) v1 has an

edge like to Shakira album, (2) v2 has only a single edge like to MJ′s album, and (3)

v3 has no edge of type like. Conventional confidence treats v2 and v3 both as negative

examples, with conf(R2,G) = 1
3 . However, G may be incomplete: v3 has not entered

any albums she likes. Thus we should treat v3 as “unknown”, not as a counterexample

to R2. 2

Indeed, closed world assumption may not hold for social network [MZL12]. To

distinguish “unknown” cases from true negative for GPAR mining in incomplete social

networks, we adopt the local closed world assumption [GTHS13, Don14], as com-

monly used in mining incomplete knowledge bases.

Local closed world assumption (LCWA). Given a predicate q(x,y), we introduce the

following notations.

(1) supp(q,G) = ||Pq(x,G)||, the number of matches of x;

(2) supp(q̄,G), the number of nodes u in G that (a) have the same label as x, (b) have

at least one edge of type q, but (c) u 6∈ Pq(x,G); and

(3) supp(Qq̄,G), the number of nodes that satisfy conditions (a) to (c) of (2), and

are also in Q(x,G).

Given an (incomplete) social network G and a predicate q(x,y), the local closed

world assumption (LCWA) distinguishes the following three cases for a node u.

(1) “positive” case, if u ∈ Pq(x,G);

(2) “negative” case, for every u counted in supp(q̄,G); and

(3) “unknown” case, for every u that satisfies the search condition of x but has no

edge labeled as q.

That is, G is assumed “locally complete”: it either gives all correct local information of

u in connection with predicate q, or knows nothing about q at node u (hence unknown

cases).

Based on LCWA, we define conf (R, G) by revising Bayes Factor (BF) of associa-

tion rules [LTP07] as follows:

conf(R,G) =
supp(R,G) ∗ supp(q̄,G)

supp(Qq̄,G) ∗ supp(q,G)
.
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Intuitively, conf(R,G) measures the product of completeness and discriminant. A

GPAR R(x,y) has a better completeness if it holds on more matches x of Q(x,y), and

is more discriminant if it is less likely to hold on more nodes from Qq̄. In addi-

tion, BF-based conf(R,G) is better justified than conventional confidence. As veri-

fied in [KS96, LTP07], BF satisfies a set of principles for reasonable interestingness

measures, including fixed under independence (conf(R,G) = 1 if Q and q are statis-

tically independent), fixed under incompatibility (conf(R,G)=0 if supp(R,G)=0), and

monotonicity (increases monotonically with supp(R,G) whensupp(q̄,G), supp(Q,G)

and supp(q,G) are fixed). Hence we adapt BF by incorporating LCWA and topological

support.

Example 10: Consider GPAR R2 and Q2(x,G) described in Example 9. Under the

LCWA, match v1 accounts for “positive” for R2, while v2 and v3 are “negative” and

“unknown”, respectively. Indeed, assuming that G provides complete local information

for v2, then v2 is a counter-example to people who live in Ecuador but do not like

Shakira album; in contrast, G knows nothing about what albums v3 likes.

One can see that supp(R2,G) = 1 (match v1), supp(q̄,G) = 1 (match v2), supp(Qq̄,G)

= 1 (match v2), and supp(q,G) = 1 (match v1). The BF-based confidence conf(R2,G)

is 1, larger than its conventional counterpart (1
3 ) as the LCWA removes the impact of

the unknown case v3. 2

There are other alternatives to define support and confidence for GPARs. (1) Fol-

lowing minimum image-based support [BN08], supp(R,G) can be defined as the the

maximum number of matches for x in non-overlap matches (i.e., no shared nodes and

edges) of R. However, this excludes potential customers from matches that share even

a single node (e.g., only one of the three matches cust1-cust3 of Fig. 3.2 is counted),

and thus underestimates the significance. (2) Similar to PCA confidence [GTHS13],

conf(R,G) can be computed as supp(R,G)
supp(Qq̄,G) under LCWA. However, this only consid-

ers the “coverage” of R instead of its interestingness in terms of completeness and

discriminant [KS96, LTP07] (see Section 3.5).

Remark. We identify the following two “trivial” cases when conf(R,G) = ∞: (1)

supp(Qq̄,G) is 0, which interprets R as a logic rule that holds on the entire G, i.e., “if

v is in Q(x,G) then v is a match in Pq(x,G) (hence PR(x,G))”; and (2) supp(q,G) =

0, which means that q(x,y) in R specifies no user in G; hence R should be discarded

as uninteresting case. These two cases can be easily detected and distinguished in the

GPAR discovery process (see Section 3.3).
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symbols notations

Q(x,G) the set of distinct nodes that match x in Q(G)

R(x,y) GPAR Q(x,y)⇒ q(x,y), represented as pattern PR

r(Q,x) the radius of Q at node x

Nr(vx) the set of nodes within radius r of vx

supp(Q,G) the number ||Q(x,G)|| of distinct matches of x in Q(G)

conf(Q,G) (supp(R,G)∗ supp(q̄,G))/(supp(Qq̄,G)∗ supp(q,G))

Σ(x,G,η) {vx | vx ∈ Q(x,G),Q⇒ q ∈ Σ,conf(R,G)≥ η}

Table 3.1: Notations in Chapter 3

The notations of this chapter are summarized in Table 3.1.
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3.3 Diversified Rule Discovery

We now study how to discover useful GPARs.

3.3.1 The Diversified Mining Problem

We are interested in GPARs for a particular event q(x,y). However, this often gen-

erates an excessive number of rules, which often pertain to the same or similar peo-

ple [XCYH06, AYLVY09].

This motivates us to study a diversified mining problem, to discover GPARs that

are both interesting and diverse.

Objective function. To formalize the problem, we first define a function diff(,) to

measure the difference of GPARs. Given two GPARs R1 and R2, diff(R1,R2) is defined

as

diff(R1,R2) = 1− |PR1(x,G)∩PR2(x,G)|
|PR1(x,G)∪PR2(x,G)|

in terms of the Jaccard distance of their match set (as social groups). Such diversi-

fication has been adopted to battle against over-concentration in social recommender

systems when the items recommended are too “homogeneous” [AYLVY09].

Given a set Lk of k GPARs that pertain to the same predicate q(x,y), we define

the objective function F(Lk) again by following the practice of social recommender

systems [GS09]:

(1−λ) ∑
Ri∈S

conf(Ri)

N
+

2λ

k−1 ∑
Ri,Ri∈S,i< j

diff(Ri,R j).

This, known as max-sum diversification, aims to strike a balance between interest-

ingness (measured by revised Bayes Factor) and diversity (by distance diff(,)) with

a parameter λ controlled by users. We consider nontrivial GPARs (Section 3.2) with

conf(R,G)∈ [0,supp(R,G)∗supp(q̄,G)], and normalize (1) the confidence metric with

N = supp(q,G)∗ supp(q̄,G) (a constant for fixed q(x,y)), and (2) the diversity metric

with 2λ

k−1 , since there are k(k−1)
2 numbers for the difference sum, while only k numbers

for the confidence sum.

Example 11: Consider GPARs R1 of Fig. 3.1, and R7 and R8 shown in Fig. 3.3, all per-

taining to visits(x, French restaurant). Then in graph G1 (Fig. 3.2), (1) supp(q,G1) = 5

(cust1-cust4, cust6), supp(q̄,G1) = 1 (cust5); (2) R1(x,G1) = R7(x,G1)= {cust1,cust2,cust3},
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Figure 3.3: Diversified GPARs

R8(x,G1) = {cust6}; (3) conf(R1,G1) = conf(R7,G1) = 0.6, conf(R8,G1) = 0.2; and

(4) diff(R1,R7) = 0, diff(R1,R8) = diff(R7,R8) = 1.

For λ = 0.5, a top-2 diversified set of these GPARs is {R7,R8} with F(R7,R8) =

0.5*0.8
5 +1*1 = 1.08 (similarly for {R1,R8}). Indeed, R7 and R8 find two disjoint cus-

tomer groups sharing interests in French restaurant and Asian restaurant, respectively,

with their friends.

2

Problem. Based on the objective function, the diversified GPAR mining problem

(DMP) is stated as follows.

• Input: A graph G, a predicate q(x,y), a support bound σ and positive integers k

and d.

• Output: A set Lk of k nontrivial GPARs pertaining to q(x,y) such that (a) F(Lk)

is maximized; and (b) for each GPAR R ∈ Lk, supp(R,G)≥ σ and r(PR,x)≤ d.

DMP is a bi-criteria optimization problem to discover GPARs for a particular event

q(x,y) with high support, bounded radius, and a balanced confidence and diversity.

In practice, users can freely specify q(x,y) of interests, while proper parameters (e.g.,

support, confidence, diversity) can be estimated from query logs or recommended by

domain experts.

The problem is nontrivial. Consider its decision problem to decide whether there

exists a set Lk of k GPARs with F(Lk) ≥ B for a given bound B. One can show the

following by reduction from the dispersion problem (cf. [GS09]).

Proposition 3: The DMP decision problem is NP-hard. 2
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3.3.2 Discovery Algorithm

As claimed in Chapter 2, to solve common and well studied graph computation prob-

lems, one can make use of existing sequential algorithms and their incremental ver-

sion. However, the DMP (as well as the problems in the following chapters) is a new

problem and no algorithms are in place for it. Hence we develope parallel algorithms

and provide them in the Algorithm Library of GRAPE as out-of-the-box applications,

leaving the PIE API to users for solving simple problems.

One might want to follow a “discover and diversify” approach that (1) first finds

all GPARs pertaining to q(x,y) by frequent graph pattern mining [PH02], and then (2)

selects top-k GPARs via result diversification [GS09]. However, this is costly: (a) an

excessive number of GPARs are generated; and (b) for all GPARs R generated, it has to

compute conf(R,G) and their pairwise distances, and moreover, pick a top-k set based

on F(); the latter is an intractable process itself.

One can do it more efficiently, with accuracy guarantees.

Theorem 4: There exists a parallel algorithm for DMP that finds a set Lk of top-k

diversified GPARs such that (a) Lk has approximation ratio 2, and (b) Lk is discovered

in d rounds by using n processors, and each round takes at most t(|G|/n,k, |Σ|) time,

where Σ is the set of GPARs R(x,y) such that supp(R,G)≥ σ and r(PR,x)≤ d. 2

Here t(|G|/n,k, |Σ|) is a function that takes |G|/n, k and |Σ| as parameters, rather

than the size |G| of the entire G.

As a proof, we give such an algorithm, denoted as DMine and shown in Fig. 3.4.

It designates one processor as coordinator Sc and the rest as workers Si. It works as

follows.

(1) It divides G into n− 1 fragments (F1, . . . ,Fn−1) such that (a) for each “candidate”

vx that satisfies the search condition on x in q(x,y), its d-neighbor Gd(vx), i.e., the

subgraph of G induced by Nd(vx), is in some fragment; and (b) the fragments have

roughly even size. These are possible since 98% of real-life patterns have radius 1,

1.8% have radius 2 [GFMPdlF11], and the average node degree is 14.3 in social graphs

[BW13]; thus Gd(vx) is typically small compared with fragment size.

Fragment Fi is stored at worker Si, for i ∈ [1,n−1].

(2) DMine discovers GPARs in parallel by following bulk synchronous processing, in

d rounds. The coordinator Sc maintains a list Lk of diversified top-k GPARs, initially
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empty. In each round, (a) Sc posts a set M of GPARs to all workers, initially q(x,y)

only; (b) each worker Si generates GPARs locally at Fi in parallel, by extending those

in M with new edges if possible; (c) these GPARs are collected and assembled by Sc

in the barrier synchronization phase; moreover, Sc incrementally updates Lk: it filters

GPARs that have low support or cannot make top-k as early as possible, and prepares

a set M of GPARs for expansion in the next round.

As opposed to the “discover and diversify” method, DMine (a) combines diversi-

fying into discovering to terminate the expansion of non-promising rules early, rather

than to conduct diversifying after discovering; and (b) it incrementally computes top-k

diversified matches, rather than recomputing the diversification function F() starting

from scratch.

We next present the details of algorithm DMine.

Auxiliary structures. Algorithm DMine maintains the following: (a) at the coordina-

tor Sc, a set Lk to store top k GPARs, and a set Σ to keep track of generated GPARs; and

(b) at each worker Si, a set Ci of candidates vx for x at Fi.

Messages. In each round, coordinator Sc and workers Si communicate via messages.

(1) Each worker Si generates a set Mi of messages. Each message is a triple <R, conf,

flag>, where (a) R is a GPAR generated at Si, (b) conf includes, e.g., supp(R(x,y),Fi)

and supp(Qq̄(x,y),Fi), and (c) a Boolean flag to indicate whether R can be extended at

Si. (2) After receiving Mi, Sc generates a set M of messages, which are GPARs to be

extended in the next round.

Algorithm. DMine initializes Lk and Σ as empty, and M as {q(x,y)} (line 1). For r

from 1 to d, it improves Lk by incorporating GPARs of radius r (lines 2-11), following a

levelwise approach. In each round, it invokes localMine with M at all workers (line 4).

Below we present the details.

Parallel GPARs generation (line 13). In the first round, procedure localMine receives

q(x,y) from Sc, and computes the following: (a) three sets: Ci, nodes vx that satisfy

the search condition of x in discovered GPARs, Pq(x,Fi), matches of x in q(x,y), and

q̄(x,Fi), nodes v in Fi that account for supp(q̄,Fi) (Section 3.1.2); and (b) supp(q,Fi) =

||Pq(x,Fi)||, supp(q̄,Fi) = ||Pq̄(x,Fi)||. Note that supp(q,Fi) and supp(q̄,Fi) never change

and hence are derived once for all. Each match vx ∈ q(x,Fi) is referred to as a center

node.

In round r, upon receiving M from Sc, localMine does the following. For each
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Algorithm DMine

Input: A graph G, q(x,y), bound σ, and positive integers k and d.

Output: A set Lk of top-k diversified GPARs.

/* executed at coordinator */

1. Lk := /0; Σ := /0; r : = 1; M := {q(x,y)};
2. while r ≤ d do
3. r := r + 1;

4. post M to all workers and invoke localMine (M) in parallel;

5. collect in ∆E candidate GPARs in Mi from all workers;

6. check automorphism and assemble confidence for these GPARs;

7. ∆E includes R with supp(R,G)≥ σ; Σ := Σ∪∆E; M := /0;

8. for each GPAR R ∈ ∆E do
9. incDiv (Lk,R,Σ); /* incrementally update Lk, prune Σ,∆E */

10. if R is “extendable”

11. then M := M∪{R}; /* next round */

12. return Lk;

/* executed at each worker Si in parallel, upon receiving M */

13. Σi := localMine (M);

14. construct message set Mi from Σi;

15. send Mi to the coordinator;

Figure 3.4: Algorithm DMine

GPAR R(x,y) : Q(x,y)⇒ q(x,y) in M, and each center node vx, it expands Q by in-

cluding at least one new edge that is at hop r from vx, for all such edges.

Message construction (lines 14–15). For each GPAR R(x,y): Q(x,y)⇒ q(x,y), its

local confidence conf is computed: (1) supp(R,Fi) and supp(Q,Fi) count nodes in

Pq(x,Fi) and Ci that match x in R(x,y) and Q(x,y), respectively; and (2) supp(Qq̄,Fi)

= ||Q(x,Fi)∩Pq̄(x,Fi)||. Then conf contains supp(R,Fi), supp(Qq̄,Fi), supp(q,Fi) and

supp(q̄(x,Fi)); where supp(q,Fi) and supp(q̄,Fi) values are from the first round. A

Boolean flag is also set to indicate whether R can be extended by checking whether
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there exists a center node vx that has edges at r+1 hops from vx. Message Mi includes

<R,conf,flag >for each R, and is sent to Sc.

Message assembling (lines 4-7). Upon receiving Mi from each Si, coordinator Sc does

the following. (1) It groups automorphic GPARs from all Mi. (2) For each group of

mi = <R, conf i, flagi> that refers to the same (automorphic) R, it assembles conf(R)

into a single m = <R, conf(R,G), flag>, where (a) conf(R,G)= ∑supp(R,Fi)∑supp(q̄,Fi)
∑supp(Qq̄,Fi)∑supp(q,Fi)

;

and (b) flag is the disjunction of all flagi, for i ∈ [1,n− 1]. This suffices since by

the partitioning of graph G, nodes accounted for local support in Fi are disjoint from

those in Fj if i 6= j; hence conf(R) can be directly assembled from local conf from Fi.

Similarly, supp(R,G) = ∑i∈[1,n−1] supp(R,Fi). For each GPAR R, if supp(R,G)≥ σ, it

is added to ∆E and Σ.

Incremental diversification (lines 8-9). Next, DMine incrementally updates Lk by in-

voking procedure incDiv.

It uses a max priority Queue of size d k
2e, where (1) each element in Queue is a pair

of GPARs, and (2) all GPAR pairs in Queue are pairwise disjoint. In round r, starting

from Queue of top-k diversified GPARs with radius at most r− 1, DMine improves

Queue by incorporating pairs of GPARs from ∆E, with radius r. (1) If Queue contains

less than d k
2e GPARs pairs, incDiv iteratively selects two distinct GPARs R and R′ from

∆E that maximize a revised diversification function:

F ′(R,R′) =
1−λ

N(k−1)
(conf(R)+ conf(R′))+

2λ

k−1
diff(R,R′).

and insert (R,R′) into Queue, until |Queue| = d k
2e. It bookkeeps each pair (R,R′)

and F ′(R,R′). (2) If |Queue|=d k
2e, for each new GPAR R ∈ ∆E (not in any pair of

Queue) and R′ ∈ Σ, it incrementally computes and adds a new pair (R,R′) ∈ ∆E ×Σ

that maximizes F ′(R,R′) to Queue. This ensures that a pair (R1,R2) with minimum

F ′(R1,R2) is replaced by (R,R′), if F ′(R1,R2)< F ′(R,R′).

After all GPAR pairs are processed, incDiv inserts R and R′ into Lk, for each GPARs

pairs (R,R′) ∈ Queue.

Message generation at Sc (lines 10-11). DMine next selects promising GPARs for fur-

ther parallel extension at the workers. These include R ∈ ∆E that satisfy two condi-

tions: (1) supp(R,G)≥σ, since by the anti-monotonic property of support, if supp(R,G)

< σ, then any extension of R cannot have support no less than σ; and (2) R is “Extend-

able”, i.e., flag = true in <R, conf, flag>. It includes such R in M, and posts M to all

workers in the next round.
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Example 12: Suppose that graph G1 in Fig. 3.2 is distributed to two workers S1 and

S2, where S1 (resp. S2) contains subgraphs induced by cust1-cust3 (resp. cust4-cust6)

and their 2-hop neighborhoods in G1. Let predicate q be visits(x, French restaurant),

λ=0.5, d=2 and k=2. We demonstrate algorithm DMine using example GPARs R5-R8

(Fig. 3.3).

(1) Coordinator Sc sends q to all workers, and computes supp(q,G1) = 5 (cust1-cust4,

cust6), supp(q̄,G1) = 1 (cust5).

(2) In round 1, R5 (among others) is generated at S1 from 1-hop neighbors of cust1-

cust3, which are matches in q(x,G1) (Fig. 3.3). At S2, R5 and R6 are generated by

expanding cust4 and cust6. Local messages Mi from Si include the following:

site message GPAR R(x,G1) Qq̄(x,y) flag

S1 M1 R5 cust1-cust3 /0 T

S2 M2
R5 cust4 cust5 T

R6 cust4,cust6 cust5 T

Sc
M R5 cust1-cust4 cust5 T

M R6 cust4,cust6 cust5 T

Table 3.2: Running example for DMine, round 1

(3) Coordinator Sc assembles M1 and M2, and builds ∆E including {R5,R6}. It com-

putes conf(R5) = 0.8, conf(R6) = 0.4, diff(R5,R6) = 0.8. It updates Lk = {R5,R6}, with

F ′(R5,R6) = 0.5 ∗ 1.2
5 +1 ∗ 0.8 = 0.92. It includes R5 and R6 in message M (the table

above), and posts it to S1 and S2.

(4) In round 2, R5 is extended to R7 and R1 at S1 and S2, and R6 to R8 at S2 (Fig. 3.3);

the messages include:

site message GPAR R(x,G1) Qq̄(x,y) flag

S1 M1 R7,R1 cust1-cust3 /0 F

S2 M2
R7 /0 cust5 F

R8 cust6 cust5 F

Table 3.3: Running example for DMine, round 2
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(5) Given these, coordinator Sc assembles the messages and computes conf(R7)=0.6,

conf(R8)=0.2 and diff(R7,R8)=1. DMine computes F ′(R7,R8) = 0.5 ∗ 0.8
5 +1 ∗ 1=1.08

> F ′(R5,R6)=0.92. Hence, it replaces (R5,R6) with (R7,R8) and updates Lk to be

{R7,R8}. As R7 and R8 are marked as “not extendable” at radius 2 (since d=2), DMine

returns {R7,R8} as top-2 diversified GPARs, in total 2 rounds. 2

Message reduction. By maintaining additional information, DMine reduces the sizes

of Σ, M and Mi. The idea is to test whether an upper bound of marginal benefit for any

GPAR pairs can improve the minimum F ′-value of Lk.

In each round r, incDiv filters non-promising GPARs from Σ and ∆E that can-

not make top-k even after new GPARs are discovered. It keeps track of (1) a value

F ′m=minF ′(R1,R2) for all pairs (R1,R2) in Lk, (2) for each GPAR R j in ∆E, an esti-

mated maximum confidence Uconf+(R j,G) for all the possible GPARs extended from

R j, and (3) conf(R,G) for each GPAR R in Σ. Here Uconf+(R j,G) is estimated as fol-

lows. (a) Each Si computes Usuppi(R j,Fi) as the number of matches of x in R j(x,Fi)

that connect to a center node in Fi at hop r + 1 (r ≤ d − 1). (b) Then Uconf+(R j)

is assembled at Sc as ∑Usuppi(R j,Fi)supp(q̄,G)
1∗supp(q,G) . Denote the maximum Uconf+(R j,G) for

R j ∈ ∆E as maxUconf+(∆E), and the maximum conf(R,G) for R ∈ Σ as maxconf(Σ).

Then incDiv reduces Σ and M based on the reduction rules below.

Lemma 5: [Reduction rules]: (1) A GPAR R∈Σ cannot contribute to Lk if 1−λ

N(k−1)(conf

(R,G) + maxUconf+(∆E)) + 2λ

k−1 ≤ F ′m. (2) Extending a GPAR R j ∈ ∆E does not

contribute to Lk if either (a) R j is not extendable, or (b) 1−λ

N(k−1)(Uconf+(R j,G) +

maxconf(Σ))+ 2λ

k−1 ≤ F ′m.

2

For the correctness of the rules, observe the following. (1) For each R∈Σ, conf(R)+

maxUconf+(∆E)+1 is an upper bound for its maximum possible increment to the F ′-

value of Lk; similarly for any R j from ∆E. (2) If GPAR R does not contribute to Lk,

then any GPARs extended from R do not contribute to Lk. Indeed, (a) upper bounds

Uconf(R), Usuppi(R), and Uconf+(R) are anti-monotonic with any R′ expanded of R,

and (b) maxUconf+(∆E) and maxconf(Σ) are monotonically decreasing, while F ′m is

monotonically increasing with the increase of rounds. Hence R can be safely removed

from Σ, ∆E or Mi. Note that the removal of GPARs from Σ benefit the reduction of ∆E

with smaller maxconf(Σ)), and vice versa. DMine repeatedly applies the rules until no

GPARs can be reduced from Σ and ∆E.
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Automorphism checking. To reduce redundant GPARs, DMine checks whether GPARs

in ∆E are automorphic at coordinator Sc (line 6) and locally at each Si (localMine). It

is costly to conduct pairwise automorphism tests on all GPARs in ∆E, since it is equiv-

alent to graph isomorphism.

To reduce the cost, we use bisimulation [DPP01]. A graph pattern PR1 is bisimilar

to PR2 if there exists a binary relation Ob on nodes of PR1 and PR2 such that (a) for all

nodes u1 in PR1 , there exists a node u2 in PR2 with the same label such that (u1,u2)∈Ob,

and vice versa for all nodes in PR2 ; and (b) for all edges (u1,u′1) in PR1 , there exists an

edge (u2,u′2) in PR2 with the same label such that (u′1,u
′
2) ∈ Ob; and vice versa for

all edges in PR2 . The connection between bisimulation and automorphism is stated as

follows.

Lemma 6: If graph pattern PR1 is not bisimilar to PR2 , then R1 is not an automorphism

of R2, 2

Hence, for a pair R1 and R2 of GPARs, DMine first checks whether PR1 is bisimilar

to PR2 . It checks automorphism between R1 and R2 only if so. It takes O(|∆E|2) time

to check pairwise bisimilarity Ob for all GPARs in ∆E [DPP01]. Moreover, Ob can be

incrementally maintained when new GPARs are added [Sah07]. These allow us to use

efficient (incremental) bisimulation tests instead of automorphism tests.

Trivial GPARs. DMine detects trivial GPARs R(x,y): Q(x,y)⇒ q(x,y) at Sc as follows:

(1) if supp(q,G) is 0, it returns /0 to indicate that no interesting GPARs exist; and (2)

if an extension leads to supp(Qq̄) = 0, i.e., no match in Q(x,G) violates q(x,y), Sc

removes R from ∆E and Σ.

Analyses. DMine returns a set Lk of k diversified GPARs with approximation ratio 2

(line 12), for the following reasons. (1) Parallel generation of GPARs finds all candi-

date GPARs within radius d. This is due to the data locality of subgraph isomorphism:

for any node vx in G, vx ∈ PR(x,G) iff vx ∈ PR(x,Gd(vx)) for any GPAR R of radius

at most d at x. That is, we can decide whether vx matches x via R by checking the

d-neighbor of vx locally at a fragment Fi. (2) Procedure incDiv updates Lk follow-

ing the greedy strategy of [GS09], with approximation ratio 2. This is verified by

approximation-preserving reduction to the max-sum dispersion problem, which max-

imizes the sum of pairwise distance for a set of data points and has approximation

ratio 2 [GS09]. The reduction maps each GPAR to a data point, and sets the distance

between two GPARs R and R′ as F ′(R,R′).
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For time complexity, observe that in each round, the cost consists of (a) local par-

allel generation time T1 of candidate GPARs, determined by |Fi|, M and Mi; and (b)

total assembling and incremental maintenance cost T2 of Lk at Sc, dominated by |Σ|, k

and |Mi|. The cost of message reduction (by applying Lemma 5) takes in total O(d|Σ|)
time, where in each round, it takes a linear scan of ∆E and Σ to identify redundant

GPARs. Note that ∑i∈[1,n−1] |Mi| ≤ |∆E| ≤ |Σ|, |M| ≤ |Σ|, and |Fi| is roughly |G|/n by

our partitioning strategy. Hence T1 and T2 are functions of |G|/n, k and |Σ|.
This completes the proof of Theorem 4.

Remarks. Algorithm DMine can be easily adapted to the following two cases. (1)

When a set of predicates instead of a single q(x,y) is given, it groups the predicates

and iteratively mines GPARs for each distinct q(x,y). (2) When no specific q(x,y) is

given, it first collects a set of predicates of interests (e.g., most frequent edges, or with

user specified label q), and then mines GPARs for the predicate set as in (1).
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3.4 Identifying Customers

We study how to identify potential customers with GPARs.

3.4.1 The Entity Identification Problem

Consider a set Σ of GPARs pertaining to the same q(x,y), i.e., their consequents are

the same event q(x,y). We define the set of entities identified by Σ in a (social) graph

G with confidence η, denoted by Σ(x,G,η), as follows:

{vx | vx ∈ Q(x,G),Q(x,y)⇒ q(x,y) ∈ Σ,conf(R,G)≥ η}

Problem. We study the entity identification problem (EIP):

• Input: A set Σ of GPARs pertaining to the same q(x,y), a confidence bound

η > 0, and a graph G.

• Output: Σ(x,G,η).

It is to find potential customers x of y in G identified by at least one GPAR in Σ, with

confidence of at least η.

Intractability. The decision problem of EIP is to determine, given Σ, G and η, whether

Σ(x,G,η) 6= /0. It is equivalent to decide whether there exists a GPAR R ∈ Σ such that

conf(R,G) ≥ η. The problem is nontrivial, as it embeds the subgraph isomorphism

problem, which is NP-hard.

Proposition 7: The decision problem for EIP is NP-hard, even when Σ consists of a

single GPAR. 2

A naive way to compute Σ(x,G,η) is as follows. For each R(x,y) : Q(x,y)⇒ q(x,y)

in Σ, (a) enumerate all matches of Qq̄ and PR in G by using an algorithm for subgraph

isomorphism, e.g., VF2 [CFSV04]; (b) compute supp(q,G) and supp(q̄,G) once in

G; then based on the findings, (c) identify those R with conf(R,G) ≥ η, and return

matches of x by these GPARs. This is cost-prohibitive (e.g., takes O(|G|!|G||Σ|) time

using VF2 [CFSV04]) in real-life social graphs G, which often have billions of nodes

and edges [UKBM11]. It is thus not practical to simply apply graph pattern matching

algorithms to EIP over large G.

One might think that parallelization would solve the problem. However, paral-

lelization is not always effective.
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Parallel scalability. To characterize the effectiveness of parallelization, we formalize

parallel scalability following [KRS88]. Consider a problem A posed on a graph G. We

denote by t(|A|, |G|) the worst-case running time of a sequential algorithm for solving

A on G. For a parallel algorithm, we denote by T (|A|, |G|,n) the time taken by the

algorithm for solving A on G by using n processors. Here we assume n� |G|, i.e.,

the number of processors does not exceed the size of the graph; this typically holds in

practice since G has billions of nodes and edges, much larger than n.

We say that the algorithm is parallel scalable if

T (|A|, |G|,n) = O(t(|A|, |G|)/n)+(n|A|)O(1).

That is, the parallel algorithm achieves a polynomial reduction in sequential running

time, plus a “bookkeeping” cost O((n|A|)l) for a constant l that is independent of |G|.
Obviously, if the algorithm is parallel scalable, then for a given G, it guarantees

that the more processors are used, the less time it takes to solve A on G. It allows us to

process big graphs by adding processors when needed. If an algorithm is not parallel

scalable, we may not get reasonable response time no matter how many processors are

used.

We say that problem A is parallel scalable if there exists a parallel scalable algo-

rithm for it. Unfortunately, parallel scalability is not warranted for all problems, e.g.,

it is beyond reach for graph simulation [FWWD14]. The good news is as follows.

Theorem 8: EIP is parallel scalable. 2

As a proof, we outline a parallel algorithm for EIP, denoted by Matchc. Given Σ,

G = (V,E,L), η and a positive integer n, it computes Σ(x,G,η) by using n processors.

Note that Matchc is exact: it computes precisely Σ(x,G,η).

To present Matchc, we use the following notations. (a) We use d to denote the

maximum radius of R(x,y) at node x, for all GPARs R in Σ. (b) For a node vx ∈ V ,

Gd(vx) is the d-neighbor of vx in G (see Section 3.3.2). (c) We denote by L the set of

all candidates vx of x, i.e., nodes in G that satisfy the search condition of x in q(x,y).

Algorithm. Matchc capitalizes on the data locality of subgraph isomorphism (see Sec-

tion 3.3.2). It works as follows.

(1) Partitioning. It divides G into n fragments F = (F1, . . . ,Fn) in the same way as

algorithm DMine (Section 3.3.2), such that Fi’s have roughly even size, and Gd(vx) is

contained in one Fi for each vx ∈ L. This is done in parallel. In particular, Gd(vx) can
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be constructed in parallel by revising BFS (breadth-first search), within d hopes from

vx. Each fragment Fi is assigned to a processor Si for i ∈ [1,n].

(2) Matching. All processors Si compute local matches in Fi in parallel. For each

candidate vx ∈ L that resides in Fi, and for each GPAR R(x,y) : Q(x,y)⇒ q(x,y) in Σ,

Si checks whether vx is in PR(x,Gd(vx)), PQ(x,Gd(vx)) and Pq(x,Gd(vx)), and whether

vx has an outlink labeled q.

(3) Assembling. Compute conf(R,G) for each R in Σ by assembling the partial results

of (2) above. This is also done in parallel: first partition L into n fragments; then each

processor operates on a fragment and computes partial support. These partial results

are then collected to compute conf(R,G). Finally, output those vx when there exists a

GPAR R such that vx ∈ PR(x,G) and conf(R,G)≥ η.

Analysis. To show that Matchc is parallel scalable, observe the following. (1) Step 1 is

in O(|L||Gm
d |/n) time, since BFS is in O(|Gm

d |) time, where Gm
d is the largest d-neighbor

for all vx ∈ L. (2) Step 2 takes O(t(|Gm
d |, |Σ|)|L|/n) time, where t(|Gm

d |, |Σ|) is the worst-

case sequential time for processing a candidate vx. (3) Step 3 takes O(|L||Σ|/n) time.

(4) By |L| ≤ |V |, steps 1 and 2 take much less time than t(|G|, |Σ|), since t(,) is an

exponential function by Proposition 7, unless P = NP. (5) In practice, t(|Gm
d |, |Σ|)|L| �

t(|G|, |Σ|) since t(,) is exponential and Gm
d is much smaller than G. Indeed, (a) in the

real world, graph patterns in GPARs are typically small, and hence so is the radius d;

as argued in Section 3.3.2, Gd(vx) is thus often small.

Putting these together, we have that the parallel cost T (|G|, |Σ|,n)< O(t(|G|, |Σ|)/n),

and better still, the larger n is, the smaller T (|G|, |Σ|,n) is.

Remark. Algorithm DMine (Section 3.3.2) takes t(|A|/n,k) time and is parallel scal-

able if the problem size |A| is measured as |G|+ |Q|+ |Σ| [KS11]. Indeed, if one wants

all candidate GPARs R with supp(R,G)≥ σ, then |Σ| is the size of the output, and |Σ|
is not large (due to small d and large σ).

3.4.2 Optimization Strategies

Algorithm Matchc just aims to show the parallel scalability of EIP. Its cost is domi-

nated by step 2 for matching via subgraph isomorphism. To reduce the cost, we develop

algorithm Match that improves Matchc by incorporating the following optimization

techniques. To simplify the discussion, we start with a single GPAR R(x,y) : Q(x,y)⇒
q(x,y).
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Early termination. For each candidate vx ∈ L that resides in fragment Fi, we check

whether there exists a match Gx of PR in which vx matches x. As soon as one Gx is

verified a match of PR, we include vx in PR(x,Fi), without enumerating all matches of

PR at vx. This is done locally at Fi: by our partitioning strategy, Gd(vx) is contained in

Fi.

Guided search. To identify Gx at vx, Match starts with pair (x,vx) as a partial match m,

and iteratively grows m with new pairs (u,v) for u∈ PR and v∈Gd(vx) until a complete

match is identified, i.e., m covers all the nodes in PR. A complete m induces a subgraph

Gx. It is in PTIME to verify whether m is an isomorphism from PR to Gx.

To grow m, Match performs guided search based on k-hop neighborhood sketch.

For each node v in G, a k-hop sketch K(v) is a list {(1,D1), . . . ,(k,Dk)}, where Di

denotes the distribution of the node labels and their frequency at i hop of v. Given

a pair (u,v) newly added to m and a pattern edge (u,u′) in Q, Match picks “the best

neighbor” v′ of v such that the pair (u′,v′) has a high possibility to make a match.

This is decided by assigning a score f (u′,v′) as ∑i∈[1,k](Di−D′i), where D′i ∈ K(u′),

Di ∈ K(v′), and Di−D′i is the total frequency difference for each label in Di. Indeed,

(1) v′ does not match u′ if for some i, Di−D′i < 0; and (2) the larger the difference

is, the more likely v′ matches u′. If (u′,v′) does not lead to a complete m, Match

backtracks and picks v′′ with the next best score r(u′,v′′).

Example 13: Consider GPAR R1 of Fig. 3.1. For its designated node x, the 2-hop

neighborhood sketch L2(x) in PR1 contains pair (1, D1={(city,1), (cust,1), (French

Restaurant, 4)}) and (2, D2={(city,1),(cust,1),(French Restaurant, 4)}).
Given R1 and G1 of Fig. 3.2, Match identifies PR1(x,G1) as follows. (1) It finds

Pq1(x,G)={cust1-cust4,cust6}, while cust5 accounts for supp(q̄1,G1). (2) It computes

PR1(x,G1) by verifying candidates vx from Pq(x,G1), and calculates f (x,vx) in G1, e.g.,

L2(cust2) = {(1, D1 = {(city, 1), (cust, 2), (French Restaurant, 8)}), (2, D2={(city, 1),

(cust, 2), (French Restaurant, 8)})}. Hence f (x,cust2) = 5 + 5 = 10.

Match then ranks candidates cust2, cust1, cust3, cust4, where cust6 is filtered due

to mismatched sketches. (2) At cust2, Match starts from (x,cust2), and extends to

(x′,cust3) since f (x′,cust3) is the highest.

It continues to add pairs (city, NewYork), (French Restaurant, LeBernardin) and

three pairs for French Restaurant3. This completes the match, and cust2 is verified a

match.

(3) Similarly, Match verifies cust1 and cust3, and finds PR1(x,G1) = {cust1,cust2,cust3}.
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Given PR1(x,G1), Match only needs to verify cust5 for Q1 in R1; it finds Q1(x,G1)

= PR1(x,G1) ∪ {cust5}.
It also finds supp(q,G1) = 5 (cust1–cust4, cust6), supp(q̄,G1) = 1 (cust5), and

computes conf(R1) = 3∗1
1∗5 = 0.6. 2

Algorithm Match. Given a set Σ of GPARs, Match revises step (2) of Matchc by check-

ing whether vx matches x via guided search and early termination; it reduces redun-

dant computation for multiple GPARs by extracting common sub-patterns of GPARs in

Σ [LKDL12]. It remains parallel scalable following the same complexity analysis for

Matchc.
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3.5 Experimental Study

Using real-life and synthetic graphs, we conducted three sets of experiments to evaluate

(1) the scalability of algorithm DMine, (2) the effectiveness of DMine for discovering

interesting GPARs, and (3) the scalability of algorithm Match for identifying potential

customers in large graphs.

Experimental setting. We used two real-life graphs: (a) Pokec [Pok], a social network

with 1.63 million nodes of 269 different types, and 30.6 million edges of 11 types, such

as follow, like; and (b) Google+ [Gon12], a social graph with 4 million entities of 5

types and 53.5 million links of 5 types.

We also designed a generator for synthetic graphs G = (V,E,L), controlled by the

numbers of nodes |V | (up to 50 million) and edges |E| (up to 100 million), with L

drawn from an alphabet L of 100 labels.

Pattern generator. To evaluate Match, we generated GPARs R controlled by the num-

bers |Vp| and |Ep| of nodes and edges in PR, respectively. (1) We found 48 meaningful

GPARs on each of Pokec and Google+, with labels drawn from their data (domain,

social groups).

(2) For synthetic graphs, we also generated 24 GPARs with labels drawn from L .

We denote the size of a GPAR R as |R|= (|Vp|, |Ep|).

Algorithms. We implemented the following, all on GRAPE. (1) Algorithm DMine,

compared with (a) DMineno, its counterpart without optimization (incremental, re-

ductions and bisimilarity checking), and (b) GRAMI [EASK14], an open source fre-

quent subgraph mining tool. Since GRAMI uses a single machine [EASK14], we

only compared the interestingness of patterns found by GRAMI with GPARs discov-

ered by DMine. (2) Algorithm Match, compared with (a) Matchc (Section 3.4.1), (b)

disVF2, a parallel implementation of VF2 for EIP, and (c) Matchs, Match by using the

method of [RW15] instead of VF2.

Fragmentation and distribution. We revised the algorithm of [RPG+13] to evenly par-

tition graph G into n fragments (see Section 3.3.2). We find that the gap between

maximum and minimum time spent on different fragments by DMine is at most 14.4%

(resp. 8.8%) of the time for processing fragments of Pokec (resp. Google+), and at

most 6.0% (resp. 5.2%) of the time for identifying matches by Match. These indicate

that the impact of skew from partitioning is fairly small.

We deployed the algorithms and n fragments on n ∈ [4,20]. Each experiment was
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Figure 3.5: Parallel scalability of DMine

run 5 times and the average is reported here.

Experimental results. We next report our findings. We fixed parameter λ = 0.5 for

diversification in Exp-1.

Exp-1: Scalability of DMine. We first evaluated the scalability of DMine vs. DMineno.

We used k = 10, and found that different k had little impact.

We found that GPARs mined in real-life graphs with infrequent edge labels usually

denote unrelated facts. Hence we used 20 most frequent edge patterns, i.e., graph

patterns consisting of a single edge (with both node and edge labels), to grow GPARs

in Pokec. We used all 5 types of edges in Google+.
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Varying n. Fixing radius d = 2 and support σ = 5000 (500 for Google+), we varied

the number n of processors from 4 to 20. The algorithms generated up to 300 patterns

to be verified. As shown in Fig. 3.5(a) (resp. Fig. 3.5(b)), (1) DMine scales well with

the increase of processors: the improvement is 3.7 (resp. 2.69) times when n increases

from 4 to 20; and (2) it is on average 1.67 (1.37) times faster than DMineno; this verifies

that our optimization strategies effectively reduce confidence checking time, which is

a major bottleneck in DMineno. With 20 processors, DMine takes 168.3 (resp. 379)

seconds on Pokec (resp. Google+).

Varying σ. Fixing d = 2 and n = 4, we varied σ from 3K to 7K (resp. 700 to 1100)

on Pokec (resp. Google+). Figures 3.5(c) and 3.5(d) tell us the following. (1) All

algorithms takes longer with smaller σ, because more patterns satisfy the support con-

straint and are checked. (2) DMine outperforms DMineno in all cases. Moreover, it is

less sensitive to the increment of σ. This is because DMine checks much less patterns

than DMineno due to its filtering strategy.

Using large synthetic graphs of size up to (50M,100M), we evaluated the impact

of n, the size of G and radius d.

Varying n (Synthetic). Fixing |G| = (10M, 20M), d = 2 and σ = 100, we varied n from

4 to 20. The results (Fig. 3.5(e)) are consistent with Figures 3.5(a) and 3.5(b). DMine

takes 533.2 seconds over synthetic G with 20 processors.

Varying |G| (Synthetic). Fixing n= 16, d = 2 and σ = 100, we varied |G| from (10M,20M)

to (50M,100M). As shown in Fig. 3.5(f), (1) both algorithms take longer on larger

graphs; and (2) DMine outperforms DMineno by 1.76 times, verifying the effectiveness

of our optimization methods.

Varying d. Fixing n = 16, |G| = (50M,100M) and σ = 100, we varied d from 1 to 3.

We find that DMine and DMineno take longer over larger d (not shown), as expected.

However, DMine is less sensitive to d, since its optimization strategies reduces GPAR

candidates and checking time.

Exp-2: Effectiveness of DMine. We manually examined GPARs discovered by DMine

from Pokec and Google+. Three GPARs are shown in Fig. 4.11, with support above

100:

(1) R9 (Pokec): if x follows user1, user1 follows user2, user2 follows x, user1 and user2

share the hobby to listen to music, x and user1 share the hobby of party, and if user2

likes Disco music, then x likes Disco. This suggests regularity between types of music
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Figure 3.6: Effectiveness of DMine

people like and their friends’ hobbies.

(2) R10 (Pokec): if x and x′ follow each other and both like books of profession development,

and if x′ likes books about personal development, then so does x. This suggests that

potential customers x favor books liked by their friends.

(3) R11 (Google+): if x follows x′, both x and x′ went to CMU, both x and x′ are

employees of Microsoft, and if x′ was majored in CS, then x was also likely majored in

CS. This indicates a social pattern between Microsoft employees and CMU computer

science students.

We also found that most patterns mined by GRAMI are cycles of users. These

patterns, although quite frequent, reveals little insight about entity associations.

GPARs with different metrics. We also evaluated different confidence metrics for GPARs

(Section 3.2). Given a GPAR R, we define its (1) PCA confidence [GTHS13] PCAconf(R,G)

as supp(R,G)
supp(Qq̄,G) , and (2) image-based Iconf(R,G) by replacing supp(·,G) in conf(R,G)

with the image-based support [BN08].

We evaluated prediction precision of these metrics for social networks follow-

ing [GTHS13]. We partitioned Pokec into two fragments F1 (as training data) and

F2 (for cross validation), and selected 5 predicates as in Exp-1 from F1.

We set λ = 0 to focus on the relevance of GPARs, and mined top 10, 30 and 60

GPARs from F1 with highest conf, PCAconf and Iconf, respectively. We evaluate the

precision for each GPAR R as prec(R)= supp(R,F2)
supp(Q,F2)

, indicating correctly predicted cus-

tomers in F2, constrained by GPARs mined from F1.

As shown in the table 3.4, (1) DMine is able to identify GPARs that “predict” pred-

icates with average precision up to 42.3%, and (2) GPARs ranked by our conf metric

provides better prediction precision than PCAconf and Iconf.

Exp-3: Scalability of Match. Finally, we evaluated (1) the scalability of Match with
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Top 10 Top 30 Top 60

PCAconf 0.276 0.280 0.277

Iconf 0.267 0.273 0.265

conf 0.423 0.388 0.381

Table 3.4: Prediction precision

the number n of processors, and the impacts of (2) the number ||Σ|| of GPARs in Σ, (3)

the maximum radius d of GPARs in Σ, and (4) the size |G| of graphs. We started with

real-life graphs and fixed η = 1.5.

Varying n. Fixing ||Σ|| = 24, |R| = (5,8) and d = 2, we varied n from 4 to 20. Fig-

ures 3.7(a) and 3.7(b) report the results on Pokec and Google+, respectively, which tell

us the following.

(1) Match, Matchc and Matchs allow a high degree of parallelism. For instance, Match

is 3.52 (resp. 3.54) times faster when n increases from 4 to 20 on Pokec (resp. Google+).

This is consistent with Theorem 8. are efficient. In particular, Match takes 9.1 seconds

on social graph Pokec with 20 processors, and it scales better than Matchc and disVF2.

We find that Matchs and Match have very similar performance, and thus we report

Match only.

(2) Our optimization strategies are effective. (a) Compared to disVF2, Matchc and

Match are 4.79 and 6.24 times faster on average, since for each GPAR R : Q⇒ q,

disVF2 invokes two isomorphic checks at each candidate vx (one for PR and one for

Qq̄) vs. one by Matchc and Match; this justifies the need for new algorithms for EIP

instead of applying conventional pattern matching algorithms. (b) Match is 1.2 and

1.35 times times faster than Matchc on Pokec and Google+, respectively, demonstrat-

ing the effectiveness of early termination and guided search, without enumerating all

matches.

Varying ||Σ||. Fixing n = 8 and d = 2, we varied ||Σ|| from 8 to 48. As shown in Fig-

ures 3.7(c) and 3.7(d), (1) all algorithms take longer time with larger ||Σ||, as expected;

(2) Match is less sensitive to ||Σ|| than Matchc and disVF2; (3) the improvement of

Match over the others is greater on larger Σ. These are because optimization by early

termination and guided search works better for more GPARs in Σ.

Varying d. Fixing n = 8 and ||Σ|| = 20, we varied d from 1 to 5. As shown in Fig-

ures 3.7(e) and 3.7(f) (in logarithmic scale), all algorithms take longer time with larger



Chapter 3. Association Rules Discovery on GRAPE 90

 0

 50

 100

 150

 200

4 8 12 16 20

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(a) Match: Varying n (Pokec)

 0

 50

 100

 150

 200

 250

 300

 350

4 8 12 16 20

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(b) Match: Varying n (Google+)

 0

 50

 100

 150

 200

 250

8 16 24 32 40 48

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(c) Match: Varying ||Σ|| (Pokec)

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 16 24 32 40 48

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(d) Match: Varying ||Σ|| (Google+)

 100

1 2 3 4 5

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(e) Match: Varying d (Pokec)

 100

1 2 3 4 5

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(f) Match: Varying d (Google+)

 0

 200

 400

 600

 800

 1000

4 8 12 16 20

T
im

e 
(s

ec
o
n
d
)

Match
Matchc
disVF2

(g) Match: Varying n (Synthetic)

 0

 200

 400

 600

 800

 1000

(10M,20M) (20M,40M) (30M,60M) (40M,80M) (50M,100M)

T
im

e 
(s

ec
on

d)

Match
Matchc
disVF2

(h) Match: Varying |G| (Synthetic)

Figure 3.7: Performance evaluation of Match

d, since more nodes in the d-neighbors of candidates need to be visited. Nonethe-

less, Match and Matchc are less sensitive to d than disVF2 due to their optimization
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techniques (data locality leveraged by Matchc, and early termination by Match).

Synthetic graphs. Using larger synthetic graphs, we evaluated the impact of n. Fixing

|G|= (50M,100M), d = 2, η = 1.5 and ||Σ||= 24, we varied n from 4 to 20. As shown

in Fig. 3.7(g), the result is consistent with its counterparts on real-life graphs (Fig-

ures. 3.7(a) and 3.7(b)). The improvement for Match is 3.65 times when n increases

from 4 to 20.

Fixing n = 4, ||Σ|| = 24, η = 1.5 and d = 2, we varied |G| from (10M,20M) to

(50M,100M). As shown in Fig. 3.7(h), (1) all the algorithms take longer on larger |G|,
as expected; (2) Match performs the best, and is less sensitive to |G| than the others;

and (3) despite Proposition 7, Match is reasonably efficient: when |G| = (50M,100M),

Match takes 163 seconds with 4 processors, while disVF2 takes 922 seconds.

Summary. We find the following. (1) It is not very expensive to mine diversified top-k

GPARs in large social networks. For instance, DMine takes 533.2 seconds on graphs

with |G|= (10M,20M) by using 20 processors, when k = 10, σ = 100 and d = 2. (2)

The number of candidate GPARs is not very large (up to 300), and hence DMine is

“parallel scalable” (Section 3.4.1): it is 3.2 times faster on average when n increases

from 4 to 20, on real-world social networks. (3) Moreover, discovered GPARs based

on our conf metric predict more precise potential customers in social networks than

its PCA and image-based counterparts. (4) Match is parallel scalable: it is 3.53 times

faster on average when n increases from 4 to 20 over real-life social networks. (5) It

is practical to apply GPARs to large graphs: on graphs with |G| = (50M,100M) and

a set Σ of 24 GPARs, Match takes less than 45 seconds with 20 processors. (6) Our

optimization strategies are effective: DMine outperforms DMineno by 1.52 times, and

Match is 1.27 and 6.24 times faster than Matchc and disVF2, respectively, on real-life

graphs, on average.
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3.6 Related Work

We categorize related work in this chapter as follows.

Association rules. Introduced in [AIS93], association rules are defined on relations of

transaction data. Prior work on association rules for social networks [SHJS06] and

RDF knowledge bases resorts to mining conventional rules and Horn rules (as con-

junctive binary predicates) [GTHS13] over tuples with extracted attributes from social

graphs, instead of exploiting graph patterns. While [BBBG09] studies time-dependent

rules via graph patterns, it focuses on evolving graphs and hence adopts different se-

mantics for support and confidence.

GPARs extend association rules from relations to graphs. (a) It demands topolog-

ical support and confidence metrics. Moreover, incomplete information is common

in social graphs [Don14, GTHS13] and has to be incorporated into the metrics. (b)

GPARs are interpreted with isomorphic functions and hence, cannot be expressed as

conjunctive queries, which do not support negation or inequality needed for functions.

(c) Applying GPARs becomes an intractable problem of multi-pattern-query process-

ing in big graphs. (d) Mining (diversified) GPARs is beyond rule mining from item-

sets [ZZ02].

Graph pattern mining. There have been algorithms for pattern mining in graph databases

[IWM00, HCD+94] (see [JCZ13] for a survey). Large-scale mining techniques are

also studied in a single graph [EASK14], notably top-k algorithms [KCY09, FVT12,

XCYH06, SQC14]. To reduce the cost, scalable subgraph isomorphism algorithms,

e.g., [RW15], can be adopted to generate pattern candidates. Diversity of graph pat-

terns is not studied there.

However, (a) pattern mining over graph databases [IWM00, KCY09] cannot be

used to mine GPARs, as their anti-monotonic property does not hold in a single graph

[JCZ13]. (b) While mining single graphs is based only on isomorphic counting [EASK14],

DMP is bi-criteria optimization problem for confidence and diversity of GPARs, apart

from [FVT12, XCYH06]. We are not aware of prior work on discovering diversified

graph patterns.

Graph pattern matching. Several parallel algorithms have been developed for sub-

graph isomorphism, e.g., [KLCL13, RW15, RvRH+14], and for multi-pattern opti-

mization, e.g., [LKDL12, HVA14].

Our algorithms for EIP differ from the prior work in the following. (a) Instead of

enumerating isomorphic matches, EIP identifies a potential customer once one match
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is found, and moreover, computes its associated confidence. That is, EIP is beyond

conventional subgraph isomorphism. (b) We provide parallel scalable algorithms for

multi-pattern matching. To the best of our knowledge, these are among the first algo-

rithms on big graphs that guarantee a polynomial speedup over sequential algorithms

with the increase of processors [KRS88]. (c) We propose optimization strategies that

are not studied by previous work. This said, prior optimization techniques can be in-

corporated into GPAR-based entity identification; e.g., the methods of [LKDL12] to

extract common sub-patterns.
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3.7 Summary

In this chapter, we have proposed association rules with graph patterns (GPARs), from

syntax, semantics to support and confidence metrics. We have studied DMP and EIP,

for mining GPARs and for identifying potential customers with GPARs, respectively,

from complexity to parallel (scalable) algorithms. Our experimental study has verified

that while DMP and EIP are hard, it is feasible to discover and make practical use of

GPARs. We contend that GPARs provide a promising tool for social media marketing,

among other applications.



Chapter 4

Extending Pattern Matching on

GRAPE with Quantifiers

We have shown that the GRAPE is capable of handling complicated applications such

as association rules in Chapter 3. However, till now the graph pattern is typically

defined in the same format of the graph, which lacks a rich expressiveness and limits

the effectiveness of the applications such as GPARs.

In this chapter, we consider revision of graph pattern. By adding counting quanti-

fiers, the graph patterns get more expressive power. Better still, this does not introduce

extra complexity for its matching problem. We then extend GPARs with counting

quantifiers to meet the need in the social marketing.

95
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Given a graph pattern Q(xo) and a graph G, graph pattern matching is to find

Q(xo,G), the set of matches of xo in subgraphs of G that are isomorphic to Q. Here

“query focus” xo is a designated node of Q denoting search intent [BMC10]. Tradi-

tionally, pattern Q is modelled as a (small) graph in the same form as G. This notion

of patterns is used in social group detection and transportation network analysis.

However, in applications such as social media marketing, knowledge discovery

and cyber security, more expressive patterns are needed, notably ones with counting

quantifiers.

Example 14: (1) Consider an association rule for specifying regularities between en-

tities in social graphs:

• If (a) person xo is in a music club, and (b) among the people whom xo follows,

at least 80% of them like an album y, then the chances are that xo will buy y.

Its antecedent specifies conditions (a) and (b). If these two conditions hold, then we

can recommend album y to xo. This is an example of social media marketing, which is

predicted to trump traditional marketing. Indeed, empirical studies suggest that “90%

of customers trust peer recommendations versus 14% who trust advertising” [tru], and

“the peer influence from one’s friends causes more than 50% increases in odds of

buying products” [BU12].

The antecedent is specified as a quantified graph pattern (QGP) Q1(xo) shown

in Fig. 4.1, where xo is its query focus, indicating potential customers. Here edge

follow(xo,z) carries a counting quantifier “≥ 80%”, for condition (b) above. In a social

graph G, a node vx matches xo in Q1, i.e., vx ∈ Q1(xo,G), if (a) there exists an iso-

morphism h from Q1 to a subgraph G′ of G such that h(xo) = vx, i.e., G′ satisfies the

topological constraints of Q1, and (b) among all the people whom vx follows, 80% of

them account for matches of z in Q1(G), satisfying the counting quantifier.

The following association rules are also found useful in social media marketing,

with various counting quantifiers:

• If for all the people z whom xo follows, z recommends Redmi 2A (cell phone),

then xo may buy a Redmi 2A.

• If among the people followed by xo, (a) at least p of them recommend Redmi 2A,

and (b) no one gives Redmi 2A a bad rating, then xo may buy Redmi 2A.

The antecedents of these rules are depicted in Fig. 4.1 as QGPs Q2(xo) and Q3(xo), re-

spectively. Here Q2 uses a universal quantification (= 100%), while Q3 carries numeric
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aggregate (≥ p) and negation (= 0). In particular, a node vx in G matches xo in Q3 only

if there exists no node vw in G such that follow(vx,vw) is an edge in G and there exists

an edge from vw to Redmi 2A labeled “bad rating”. That is, counting quantifier “= 0”

on edge follow(xo,z2) enforces negation.

(2) Quantified graph patterns are also useful in knowledge discovery. For example,

QGP Q4(xo) of Fig. 4.1 is to find

• all people who (a) are professors in the UK, (b) do not have a PhD degree, and

(c) have at least p former PhD students who are professors in the UK.

It carries negation (= 0) and numeric aggregate (≥ p). 2

These counting quantifiers are not expressible in traditional graph patterns. Several

questions about QGPs are open. (1) How should QGPs be defined, to balance their ex-

pressive power and complexity? (2) Can we efficiently conduct graph pattern matching

with QGPs in real-life graphs, which may have trillions of nodes and edges [GBDS14]?

(3) How can we make use of QGPs in emerging applications? The need for studying

these is highlighted in, e.g., social marketing, knowledge discovery and cyber security.
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4.1 Quantified Graph Patterns

We next introduce quantified graph patterns QGPs. To define QGPs, we first review

conventional graph patterns.

4.1.1 Conventional Graph Pattern Matching

We consider labeled, directed graphs, defined as G = (V,E,L), where (1) V is a finite

set of nodes; (2) E ⊆V×V is a set of edges, in which (v,v′) denotes an edge from node

v to v′; and (3) each node v in V (resp. edge e in E) carries L(v) (resp. L(e)), indicating

its label or content as commonly found in social networks and property graphs.

Two example graphs are depicted in Fig. 4.2.

We review two notions of subgraphs. (1) A graph G′ = (V ′,E ′,L′) is a subgraph

of G = (V,E,L), denoted by G′ ⊆ G, if V ′ ⊆ V , E ′ ⊆ E, and for each edge e ∈ E ′

(resp. node v ∈V ′), L′(e) = L(e) (resp. L′(v) = L(v)). (2) We say that G′ is a subgraph

induced by a set V ′ of nodes if G′ ⊆ G and E ′ consists of all the edges in G whose

endpoints are in V ′.

Patterns. A graph pattern is traditionally defined as a graph Q(xo) = (VQ, EQ, LQ),

where (1) VQ (resp. EQ) is a set of pattern nodes (resp. edges), (2) LQ is a function

that assigns a node label LQ(u) (resp. edge label LQ(e)) to each pattern node u ∈ VQ

(resp. edge e ∈ EQ), and (3) xo is a node in VQ, referred to as the query focus of Q, for

search intent.

Pattern matching. A match of pattern Q in graph G is a bijective function h from nodes

of Q to nodes of a subgraph G′ of G, such that (a) for each node u ∈ VQ, LQ(u) =

L(h(u)), and (b) (u,u′) is an edge in Q if and only if (h(u),h(u′)) is an edge in G′, and

LQ(u,u′) = L(h(u),h(u′)). From h, subgraph G′ can be readily deduced.

We denote by Q(G) the set of matches of Q in G, i.e., the set of bijective functions

h that induce a match of Q in G. Query answer is the set of all matches of xo in Q(G).

Given Q(xo) and G, graph pattern matching is to compute Q(xo,G), i.e., all matches

of query focus xo in G via Q.

4.1.2 Quantified Graph Patterns

We next define QGPs, by extending conventional graph patterns to express quantified

search conditions.
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Figure 4.2: Examples of social graph

Syntax. A quantified graph pattern (QGP) Q(xo) is defined as (VQ, EQ, LQ, f ), where

VQ, EQ, LQ and xo are the same as their traditional counterparts, and f is a function

such that for each edge e ∈ EQ, f (e) is a predicate of

• a positive form σ(e)� p% for a real number p ∈ (0,100], or σ(e)� p for a

positive integer p, or

• σ(e) = 0, where e is referred to as a negated edge.

Here � is either = or ≥, and σ(e) will be elaborated shortly. We refer to f (e) as the

counting quantifier of e, and p% and p as ratio and numeric aggregate, respectively.

Counting quantifiers express logic quantifiers as follows:

• negation when f (e) is σ(e) = 0 (e.g., Q3 in Example 14);

• existential quantification if f (e) is σ(e)≥ 1; and

• universal quantifier if f (e) is σ(e) = 100% (e.g., Q2).

A conventional pattern Q is a special case of QGP when f (e) is σ(e) ≥ 1 for all

edges e in Q, i.e., if Q has existential quantification only. We leave out f (e) if it is

σ(e)≥ 1.

We call a QGP Q positive if it contains no negated edges (i.e., edges e with σ(e) =

0), and negative otherwise.

Example 15: Graph patterns Q1–Q4 given in Example 14 are QGPs with various

counting quantifiers, e.g., (1) edge (xo,z) in Q1 has a quantifier σ(xo,z) ≥ 80%; (2)

Q2 has a universal quantifier σ(xo,z)=100% on edge (xo,z), and an existential quanti-

fier for edge (z,Redmi 2A); and (3) Q3 has a negated edge (xo,z2) with σ(xo,z2) = 0.

Among the QGPs, Q1 and Q2 are positive, while Q3 and Q4 are negative. 2

Remark. To strike a balance between the expressive power and the complexity of

pattern matching with QGPs in large-scale graphs, we assume a predefined constant
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l such that on any simple path (i.e., a path that contains no cycle) in Q(xo), (a) there

exist at most l quantifiers that are not existential, and (b) there exist no more than one

negated edge, i.e., we exclude “double negation” from QGPs.

The reason for imposing the restriction is twofold. (1) Without the restriction,

quantified patterns would be able to express first-order logic (FO) on graphs. Indeed,

FO sentences P1X1 . . .PlXl ϕ can be encoded in such a pattern, where Pi is either ∀
or ∃, ϕ is a logic formula, and l is unbounded. Such patterns inherit the complexity

of FO [Lib13], in addition to #P complication. Then even the problem for deciding

whether there exists a graph that matches such a pattern is beyond reach in practice.

As will be seen shortly, the restriction makes QGPs discovery and evaluation feasible

in large-scale graphs. (2) Moreover, we find that QGPs with the restriction suffice

to express quantified patterns commonly needed in real-life applications, for small l.

Indeed, empirical study suggests that l is at most 2, and “double negation” is rare,

as “99% of real-world queries are star-like” [GFMPdlF11]. One can extend f (e) to

support >, 6= and ≤ as �, and conjunctions of predicates. To simplify the discussion,

we focus on QGPs Q(xo) in the simple form given above.

Semantics. We next give the semantics of QGPs. We consider positive QGPs first, and

then QGPs with negation.

Positive QGPs. We use the following notations. Striping all quantifiers f (e) off from

a QGP Q(xo), we obtain a conventional pattern, referred to as the stratified pattern of

Q(xo) and denoted by Qπ(xo). Consider an edge e = (u,u′) in Q(xo), a graph G and

nodes vx and v in G. When xo is mapped to vx, we define the set of children of v via e

and Q, denoted by Me(vx,v,Q) when G is clear from the context:

{v′ | h ∈ Qπ(G),h(xo) = vx,h(e) = (v,v′)},

i.e., the set of children of v that match u′ when u is mapped to v, subject to the con-

straints of Qπ. Abusing the notion of isomorphic mapping, h(e) = (v,v′) denotes

h(u) = h(v), h(u′) = h(v′), (v,v′) ∈ G and LQ(u,u′) = L(v,v′).

We define Me(v) = {v′ | (v,v′) ∈ G,L(v,v′) = LQ(e)}, the set of the children of v

connected by an e edge.

For a positive QGP Q(xo), a match h0 ∈ Q(G) satisfies the following conditions:

for each node u in Q and each edge e = (u,u′) in Q,

• if f (e) is σ(e)� p%, then |Me(h0(xo),h0(u),Q)|
|Me(h0(u))| � p%, in terms of the ratio of the

number of children of v via e and Q to the total number of children of v via e;
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Figure 4.3: Negative QGPs

and

• if f (e) is σ(e)� p, then |Me(h0(xo),h0(u),Q)| � p, in terms of the number of

children of v via e and Q.

That is, σ(e) is defined as ratio |Me(h0(xo),h0(u),Q)|
|Me(h0(u))| or cardinality |Me(h0(xo),h0(u),Q)|,

for p% or p, respectively. Intuitively, σ(e) requires that at least p% of nodes or p

nodes in Me(v) are matches for u′ when v is mapped to u. A match in Q(G) must

satisfy the topological constraints of Qπ and moreover, the counting quantifiers of Q.

Note that the counting quantifier on edge e = (u,u′) is applied at each match h0(u) of

u, to enforce the semantics of counting.

We denote by Q(u,G) the set of matches of a pattern node u, i.e., nodes v = h(u)

induced by all matches h of Q in G. The query answer of Q(xo) in G is defined as

Q(xo,G).

Example 16: For graph G1 in Fig. 4.2 and QGP Q2 of Example 14, Q2(xo,G1) =

{x1,x2}. Indeed, 100% of the friends of x1 and x2 recommend Redmi 2A. More specifi-

cally, for pattern edge e= follow(xo,z), when xo is mapped to x1 via h0, Me(h0(xo),x1,Q)

= {v0}, which is the set Me(x1) of all people whom x1 follows; similarly when xo

is mapped to x2. In contrast, while x3 matches xo via the stratified pattern of Q2,

x3 6∈Q2(xo,G1) since at least one user whom x3 follows (i.e., v4) has no recom edge to

Redmi 2A. 2

Negative QGPs. To cope with QGP Q(xo) with negated edges, we define the following:

(1) Π(Q): the QGP induced by those nodes in Q(xo) that are connected to xo (via a

path from or to xo) with non-negated edges in Q(xo), i.e., Π(Q) excludes all those

nodes connected via at least one negated edge; (2) Q+e, obtained by “positifying” a

negated edge e in Q, i.e., by changing f (e) from σ(e) = 0 to σ(e)≥ 1; and (3) E−Q , the

set of all negated edges in Q.
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Then in a graph G, query answer to Q(xo) is defined as

Q(xo,G) = Π(Q)(xo,G)\
(⋃

e∈E−Q
Π(Q+e)(xo,G)

)
.

That is, we enforce negation via set difference. One can verify that for each node u in

Q and each negated edge e = (u,u′) in Q, |Me(h0(xo),h0(u),Q)|= 0.

Example 17: Consider G1 and Q3 of Example 14 with p=2. Pattern Π(Q3), which

excludes the negated edge e = (xo,z2) in Q3, and Π(Q+e
3 ), which“positifies” e in Q3,

are shown in Fig. 4.3. One can verify the following: (1) Π(Q3)(xo,G1) is {x2,x3};
note that x1 is not a match since only 1 user whom x1 follows recommends Redmi 2A,

and hence violates the counting quantifier ≥ p; and (2) Π(Q+e
2 ) is {x3}, which is a

“negative” instance for Q3. Hence, Q3(xo,G1) is {x2}, where x3 is excluded since he

follows v4 who gave a bad rating on Redmi 2A, i.e., violating the negation σ(e) = 0.

Similarly, for QGP Q4 and graph G2 of Fig. 4.2, when p=2, Q4(xo,G2) is {x5,x6}.
Note that node x4 matches the stratified pattern of Q4, but it violates the negation on

(xo, PhD), which requires that matches of xo must not be a PhD.

As another example, consider Q5(xo) with two negated edges e1 = (Prof, UK) and

e2 = (z, PhD). It is to find non-UK professors who supervised students who are pro-

fessors but have no PhD degree. As shown in Fig. 4.3, Π(Q5) finds professors who

supervised students who are professors. In contrast, Π(Q+e1
5 ) finds such professors

in the UK, and Π(Q+e2
5 ) (not shown) retrieves professors with students who are pro-

fessors and have a PhD. In a graph G, Q(xo,G) = Π(Q5)(xo,G) \ (Π(Q+e1
5 )(xo,G)∪

Π(Q+e2
5 )(xo,G)).

2

The notations in this chapter are summarized in Table 4.1.
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symbols notations

Q(xo) QGP, defined as (VQ, EQ, LQ, f )

Q(xo,G) query answer, the set of matches of xo

Qπ(xo) stratified pattern of Q by removing quantifiers

G′ ⊆ G G′ is a subgraph of G

Me(vx,v,Q) {v′ | h ∈ Qπ(G),h(xo) = vx,h(e) = (v,v′)}, e = (u,u′)

Me(v) {v′ | (v,v′) ∈ G,L(v,v′) = LQ(e)}
σ(e)� p% |Me(h0(xo),h0(u),Q)|

|Me(h0(u))| � p%, e = (u,u′), h0 ∈ Q(G)

σ(e)� p |Me(h0(xo),h0(u),Q)|� p, e = (u,u′), h0 ∈ Q(G)

Π(Q) Q(xo) excluding nodes with negated edges

Q+e by positifying a negated edge e in Q

R(xo) QGAR Q1(xo)⇒ Q2(xo)

Table 4.1: Notations in Chapter 4
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4.2 The Complexity of Quantified Matching

In the next three sections, we study quantified matching:

• Input: A QGP Q(xo) and a graph G.

• Output: Q(xo,G),

to compute the set of all matches of query focus xo of Q in G. The need for studying

this is highlighted in, e.g., social marketing, knowledge discovery and cyber security.

We establish the complexity of the problem in this section.

Decision problem. Its decision problem, referred to as the quantified matching prob-

lem, is stated as follows.

• Input: A QGP Q(xo), a graph G and a node v in G.

• Question: Is v ∈ Q(xo,G)?

When Q(xo) is a conventional pattern, the problem is NP-complete. When it comes

to QGPs, however, ratio aggregates σ� p% and negation σ = 0 increase the expressive

power, and make the analysis more intriguing. To handle σ� p%, for instance, a

brute-force approach invokes an NP algorithm that calls a #P oracle to check the ratio

aggregate.

We show that while the increased expressive power of QGPs comes with a price,

their complexity bound does not get much higher. In particular, #P is not necessary.

Theorem 9: The quantified matching problem remains NP-complete for positive QGPs,

and it becomes DP-complete for (possibly negative) QGPs. 2

Here DP is the class of languages recognized by oracle machines that make a call

to an NP oracle and a call to a coNP oracle. That is, L is in DP if there exist languages

L1 ∈ NP and L2 ∈ coNP such that L = L1∩L2 [Pap03]

That is, adding positive quantifiers to conventional graph patterns does not increase

the complexity, although ratio aggregates add extra expressive power. Note that such

positive patterns alone are already useful in practice. In contrast, the presence of nega-

tion makes quantified matching harder, but it remains low in the polynomial hierar-

chy [Pap03].

The proof is nontrivial. Below we present lemmas needed, and provide detailed

proofs.
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The lower bounds follow from the stronger results below, which are in turn verified

by reductions from SUBGRAPH ISOMORPHISM and EXACT-CLIQUE, which are NP-

complete and DP-complete, respectively (cf. [Pap03]).

Lemma 10: For QGPs with numeric aggregates only, the quantified matching problem

is NP-hard for positive QGPs, and DP-hard for (possibly negative) QGPs. 2

The upper bounds are verified by the next two lemmas. In particular, Lemma 12

shows that ratio aggregates can be encoded as numeric aggregates by transforming

both query Q and graph G, in PTIME. This explains why positive QGPs with ratio

aggregates retain the same complexity as conventional patterns, despite their increased

expressivity.

Lemma 11: For QGPs with numeric aggregates only, the quantified matching problem

is in NP for positive QGPs, and is in DP for (possibly negative) QGPs. 2

Lemma 12: Any QGP Q(xo) and graph G can be transformed in PTIME to QGP

Qd(xo) with numeric aggregates only and graph Gd , respectively, such that Q(xo,G) =

Qd(xo,Gd). 2

Proof:

Lemma 10: Lower bounds. We first prove the lower bounds of quantified matching,

for positive and negative QGPs.

(1) NP-hardness. We start by showing that quantified matching for positive QGPs with

numeric aggregates is already NP-hard. To do this, we construct a polynomial time

reduction from subgraph isomorphism (subISO). An instance of subISO consists of

a graph pattern Q′ and a graph G. It is to decide whether there exists a subgraph G′

of G such that Q′ is isomorphic to G′. Given Q′ and G, we construct a corresponding

QGP Q by (a) adding quantifier δ(e) ≥ 1 for all the edges e in Q′, and (b) selecting

an arbitrary pattern node in Q′ and marking it as x0 in Q. We keep G as is. One may

verify that a node vx is in Q(x0,G) if and only if there exists a subgraph isomorphism

h′ from Q′ to G, such that h′(x0) = vx for x0 in Q′. As subISO is NP-hard (cf. [Pap03]),

so is quantified matching.

(2) DP-hardness. We next prove that quantified matching for (possibly) negative QGPs

is DP-hard by reduction from EXACT-CLIQUE, which is DP-complete (cf. [Pap03]).

Given a graph G and a natural number k, EXACT-CLIQUE is to determine whether the
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largest clique of G has size exactly k.

Given an instance of EXACT-CLIQUE, i.e., a graph G = (V,E) and a number k, we

construct a new graph G′ that contains G as its subgraph, and contains an additional

node vo, as well as a new edge from vo to each of the nodes in G. We construct a QGP

Q(xo) that consists of a k-clique Q1, a k+1-clique Q2 such that xo has a unique match

vo in G′, there is an edge e from xo to each node in q1 with σ(e) ≥ 1, and to a single

node v′ in Q2 via a negated edge.

Obviously the transformation is in PTIME. Moreover, the largest clique of G has

size k if and only if vo ∈ Q(xo,G′). (1) If G has a largest clique Gk of size k, then we

map Q1 to the clique Gk and vo to xo. One may verify that vo is a match of xo. (2)

If vo is a match of xo, then vo ∈ Π(Q)(xo,G) \Π(Q+(vo,v′)) by definition. (a) Since

vo ∈ Π(Q)(xo,G), G has a clique of size k, matching Q1 in Π(Q). (b) Since vo is

the only candidate for xo and is in both Π(Q)(xo,G) and Q(xo,G), we must have that

Π(Q+(vo,v′))= /0. This shows that there exists no subgraph in G that matches Q2 as a

k+1 clique. G has a largest clique of size k.

Therefore, the transformation above is a reduction. As EXACT-CLIQUE is DP-

complete, quantified matching with (possibly) negative QGPs is DP-hard. Note that in

the reduction above, only one non-existential quantifier is used.

Lemma 11: Upper bounds. We next prove the upper bounds for quantified matching.

We first consider positive QGPs Q with numeric aggregates σ(e)� p only (Lemma 11).

We then extend the result to ratio aggregates p% (Lemma 12).

(1) Given a QGP Q(xo), we construct a traditional graph pattern Qe(xo) without quan-

tifiers, by (a) stripping off all quantifiers from Q, and (b) for each edge e(u,u′) asso-

ciated with σ(e)� p, if p > 1, we make p copies of u′ in Qe as children of u, along

with copies of edges from u′ and so on. Then one can easily verify the following: (a)

for any graph G, Q(xo,G) = Qe(xo,G), and (b) the time for constructing Qe and hence

|Qe| are both a polynomial in |Q|; this is because on each simple path in Q, there are at

most k non-existential quantifiers, for a predefined constant k. These make a PTIME

reduction from quantified matching with positive numeric aggregates to conventional

subgraph isomorphism. Since the latter is in NP, so is the former.

(2) We next prove that the quantified matching for (possibly) negative QGPs is in DP.

Following [Pap03], it suffices to construct two languages L1 and L2, such that a node

vx is in Q(xo,G) if and only if vx is in L1∩L2.
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We consider two languages below:

• L1, the set Π(Q)(xo,G), and

• L2, the set of “yes” instances for a node vx that is not a match of xo for⋃
e∈E−Q

(Π(Q+)(xo,G).

One can verify that (1) L1 ∈ NP, (2) L2 ∈ coNP, and (3) a node vx is in Q(x,G) if and

only if vx is in L1∩L2, by the definition of QGPs. Thus quantified matching is in DP.

Lemma 12: Ratio aggregates. Given a QGP Q that contains ratio aggregates σ(e)�

p%, we construct a QGP Qd and graph Gd in PTIME such that Qd consists of numeric

aggregates only, and Qd(xo,Gd) = Q(xo,G). To simplify the discussion, we consider

w.l.o.g. positive Q. For negated edges e, by the definition of Q(xo,G), e is positified in

Q+e. Hence, it suffices to consider positive edges.

(a) We transform G to a graph Gd as follows. For each node v with g child in G, we add

(1− p%)(d−g) dummy children with a label that does not match any pattern node in

Q, and p%(d− g) dummy children that complete a dummy subgraph GQ at v that is

isomorphic to Qπ of Q.

(b) We transform Q to Qd such that for each edge e with quantifier σ(e)� p%, we

replace p% with a constant p%∗d.

One may verify that a node vx ∈ Q (xo,G) if and only if its Gd-counterpart vd ∈
Qd(xd,Gd). Moreover, the transformation is obviously in PTIME. Since quantified

matching for all numeric quantified Qd is in NP by Lemma 11, so is its counterpart for

QGPs Q with ratio quantifiers. 2

This completes the proof of Theorem 9.
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Algorithm Match

Input: pattern Q(xo), graph G

Output: the answer set Q(xo,G)

1. Q(xo,G):= /0; Q(G):= /0; M := /0;

2. for each u of Q do
3. C(u):=Filtercandidate(Q,G,u);

4. if C(u)= /0 then return /0;

5. SubMatch(Q,G,M,Q(G));

6. for each isomorphic mapping h ∈ Q(G) do
7. Q(xo,G):=Q(xo,G)∪{h(xo)};
8. return Q(xo,G);

Procedure SubMatch(Q,G,M,Q(G))

1. if Verify(M) then
2. Q(G):=Q(G)∪{h}; /*h: the isomorphism defined by M*/

3. else u:=SelectNext(Q);

4. for each v ∈C(u) not matched in M do
5. if IsExtend(Q,G,M,u,v) then
6. M := M∪{(u,v)};
7. SubMatch(Q,G,M,Q(G));

8. Restore(M,u,v);

9. return;

Figure 4.4: Generic search procedure Match

4.3 Algorithms for Quantified Matching

We next provide an algorithm, denoted by QMatch, for quantified matching. It takes

a QGP Q(xo) and a graph G as input, and computes Q(xo,G) as output. It extends ex-

isting algorithms T for conventional subgraph isomorphism, to incorporate quantifier

checking and process negated edges.
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Generic graph pattern matching. We start by reviewing a generic procedure for

subgraph isomorphism, denoted by Match and shown in Fig. 4.4, slightly adapted

from [LHKL12] to output Q(xo,G) for query focus xo. As observed in [LHKL12],

state-of-the-art graph pattern matching algorithms T typically adopt Match, and differ

only in how to optimize key functions (e.g., SelectNext, IsExtend; see below). Given a

traditional pattern Q(xo) and a graph G, Match initializes Q(xo,G), as well as a partial

match M as a set of node pairs (line 1). Each pair (u,v) in M denotes that a node

from G matches a pattern node u in Q. It identifies a candidate match set C(u) for

each pattern node u in Q (lines 3-4) (FilterCandidate). If there exists a pattern node u

with no candidate, it returns /0 (line 4). Otherwise, it invokes SubMatch to compute

all matches (isomorphic mappings) Q(G) (lines 5). It then computes and returns query

answer Q(xo,G) from mappings h ∈ Q(G) (lines 6-8).

Procedure SubMatch recursively extends partial match M by using three key func-

tions. (1) It picks a pattern node u from Q that has no match yet (SelectNext, line 3).

(2) It then checks whether a candidate v of u not yet in M matches u (IsExtend), and if

so, it adds (u,v) to M (lines 4-6). (3) It recursively calls SubMatch to extend M with

steps (1) and (2) (line 7), and restores it when SubMatch backtracks (line 8). If M is

a valid isomorphism (Verify, line 1), it adds M to Q(G) (line 2). This continues until

Q(G) is completed.

4.3.1 Quantified Graph Pattern Matching

Algorithm QMatch revises the generic Match to process quantifiers. (1) It first adopts a

dynamic selection and pruning strategy to compute Π(Q)(xo,G). The dynamic search

picks top p promising neighbors based on a potential score, with p adapted to the cor-

responding quantifiers. (2) It then employs optimal incremental evaluation to process

negated edges, which maximally reuses cached matches for Π(Q) when processing

Q+e for positified e, instead of recomputing Q+e(G) starting from scratch. The strate-

gies are supported by optimized data structures and key functions from Match.

Auxiliary structures. QMatch maintains auxiliary structures for each node v in C(u) as

follows: (1) a Boolean variable X(u,v) indicating whether v is a match of u via isomor-

phism from Π(Q) to G, and (2) a vector T , where entry T (v,e) for an edge e=(u,u′)

in Q is a pair 〈c(v,e),U(v,e)〉, in which c (resp. U , initialized as Me(v)) records the

current size (resp. an estimate upper bound for) |Me(vx,v,Q)|.

Algorithm. Algorithm QMatch (outlined in Fig. 4.5) revises Match to process QGP
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Algorithm QMatch

Input: a QGP Q(xo), graph G

Output: the answer set Q(xo,G)

1. Q(xo,G):= /0; M:= /0; Π(Q)(xo,G):= /0; Π(Q)(G):= /0;

2. for each u of Q do
3. initializes C(u) and auxiliary structures;

4. Π(Q)(xo,G):=DMatch(Π(Q),G,M,Π(Q)(G));

5. for each negative edge e in E−Q do
6. Q+e(xo,G):=IncQMatch(Π(Q)(xo,G),Q+e);

7. Q(xo,G):=Π(Q)(xo,G)\
⋃

e∈E−Q
Q+e(xo,G);

8. return Q(xo,G);

Figure 4.5: Algorithm QMatch

Q(xo) in three steps. (1) It first initializes the candidate set and auxiliary structures

with a revised Filtercandidate (lines 1-3). For each pattern node u in Q(xo), it initial-

izes (a) C(u) with nodes v of the same label, and (b) X(u,v) = ⊥, c(v,e)=0 and U(v,e)

= |Me(v)| for each e=(u,u′) in Q. It removes v from C(u) if U(v,e) does not satisfy

the quantifier of e. (2) It next invokes a procedure DMatch revised from SubMatch in

Fig. 4.4 to compute Π(Q)(xo,G) (line 4). (3) It then processes each negated edge e by

constructing its positified pattern Q+e, and computes Q+e(xo,G) with an incremental

procedure IncQMatch (lines 5-6). (4) It computes Q(xo,G) by definition (line 7). We

next present DMatch, and defer IncQMatch to Section 4.3.2.

Example 18: Given Q3 with p=2 (Fig. 4.1) and G1 (Fig. 4.2), QMatch first computes

Π(Q3)(xo,G1) (Fig. 4.3). It initializes variables for nodes in G1, partially shown in

Table 4.2 (i ∈ [0,4]).

At this stage, since U(x1,(xo,z1))=1 ≤ 2, x1 fails the quantifier of (xo,z1), and is

removed from C(xo). 2

Procedure DMatch. Given positive QGP Π(Q), DMatch revises SubMatch (Fig 4.4)

by adopting dynamic search. To simplify the discussion, we consider numeric σ(e)� p

first.
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X c U

x1 X(xo,x1)=⊥ c(x1,(xo,z1))=0 U(x1,(xo,z1))=1

x2 X(xo,x2)=⊥ c(x2,(xo,z1))=0 U(x2,(xo,z1))=2

x3 X(xo,x3)=⊥ c(x3,(xo,z1))=0 U(x3,(xo,z1))=3

vi X(xo,vi)=⊥ c(vi,(z1,Redmi))=0 U(vi,(z1, Redmi))=1

Table 4.2: Running example for QMatch, quantifier check

(1) Given a selected pattern node u′ (line 3 of SubMatch), a candidate v ∈ C(u), and

an edge e=(u,u′) with quantifier σ(e)� p, DMatch dynamically finds p best nodes

(recorded in a heap SP(u′)) from C(u′) that are children of v (lines 4-5 of SubMatch,

IsExtend), using selection and pruning rules. Denote as P(v′) the parent set of v′ in G,

the potential of a match v′ ∈C(u′) is defined as:

(1+
|P(v′)∩C(u)|
|C(u)|

)∗Σ∀e=(u′,u′′)
U(v′,e)

pe
,

where pe is the number in σ(e)� pe for edge e=(u′,u′′). It favors those candidates

that (a) benefit the verification of more candidates during future backtracking, and (b)

have high upper bounds w.r.t. p (hence more likely to be a match itself). We select

candidates with the highest scores.

DMatch then updates M by including (u,v), and recursively conducts the next level

of search by forking p verifications in the order of the selected p candidates (line 7,

SubMatch). It keeps a record of M and a cursor to memorize the candidates in SP for

backtracking, using a stack.

(2) When backtracking to a candidate v ∈ SP(u) from a child v′ of v, DMatch restores

M and the cursor (Restore, line 8 of SubMatch). It next dynamically updates SP(u). (a)

If X(u′,v′)=false, it reduces U(v,e) by 1. (b) It applies the selection and pruning rules

to C(u) using the updated potentials w.r.t. the changes in (a). If the upper bound U(v,e)

fails the quantifier of e, v is removed from C(u) and SP(u) without further verifying its

other children. Otherwise, it picks a new set SP(u) of candidates with top potentials.

(3) When M is complete, i.e., each node u in Π(Q) has a match in M, DMatch checks

whether M is an isomorphic mapping. If so, it updates X(u,v)=true for each pair

(u,v)∈M, and increases the counter c(v,e). It then checks whether the counters satisfy

the quantifiers of Π(Q). If so, it adds vx to Q(xo,G). Otherwise, it proceeds. DMatch

terminates when all the candidates of xo are checked.
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Example 19: Continuing with Example 18, given C(xo) = {x2,x3}, DMatch selects x2,

and extends M with (xo,x2). In contrast to Fig 4.4, DMatch picks top 2 best candidates

SP(z1) = {v2,v1} from C(z1) following edge e=(xo,z1). This adds (z1,v2) to M, and

(Redmi 2A, Redmi 2A) for the next round. At verification, it finds M a complete

isomorphism, and updates X(vo,x2)=true and c(x2,e)=1. As x2 cannot be verified as

a match via Π(Q3) yet, DMatch next verifies v1, and sets c(x2,e)=2. As x2 is a match

and has a counter satisfying the quantifier, it is added to Π(Q3)(xo,G1). The updated

variables for candidates of C(xo) are as follows.

X c U

x2 X(xo,x2)=True c(x2,(xo,z1))=2 U(x2,(xo,z1))=2

x3 X(xo,x3)=⊥ c(x3,(xo,z1))=2 U(x3,(xo,z1))=3

Table 4.3: Running example for QMatch, next verificaiton

DMatch next verifies x3. It starts by selecting top 2 candidates SP(x3)={v2,v3}.
Once v3 is processed, it finds that x3 is in an isomorphism with c(x3,e)=2, and hence

is a match. It returns {x2,x3} as Π(Q3)(xo,G1). 2

One can readily verify the following.

Lemma 13: DMatch computes Π(Q)(xo,G) by (a) verifying no more candidates than

any Match-based subgraph isomorphism algorithm T , and (b) with space cost O(pm|Q|+
|V |), where pm is the largest constant in all quantifiers of Q. 2

Proof: To show the correctness of DMatch, first observe that DMatch always termi-

nates. Indeed, DMatch follows the verification process of conventional subgraph iso-

morphism algorithm. The process, in the worst case, enumerates all possible isomor-

phism mappings from the stratified pattern Qπ to G, which are finitely many. Hence

DMatch terminates.

We next show that DMatch correctly verifies whether a candidate vx is a match of xo

in Π(Q) via an isomorphism h0 ∈Π(Q)(G). It suffices to show that (1) h0 is a match in

Qπ(G), and (2) for each u in Π(Q) and each edge e=(u,u′), |Me(h0(xo),h0(u),Q)|� p

for f (e) = σ(e)� p.

(1) When DMatch terminates, for each u ∈ Π(Q) and every candidate v in C(u) with

X(u,v)=true, v = h(u) for some h ∈ Qπ(G), guaranteed by the correctness of Match.
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(2) For each edge (u,u′) in Π(Q) and a node v with X(u,v)=true, DMatch correctly

verifies the quantifiers by checking the updated local counter of v that keeps track of the

current |Me(h0(xo),h0(u),Q)|. In addition, DMatch waits until either v is determined

not a valid match due to that the upper bound fails the quantifier (by the local pruning

rule), or the lower bound satisfies the quantifier (in the verification). Hence, vx is a

match if and only if vx ∈Π(Q)(xo,G) when DMatch terminates.

For the space complexity, it takes O(|V |) space to store the auxiliary structures for

the nodes in G. During the search, DMatch keeps, at each level of the search, at most

pm best matches to be verified, where pm is the largest constant in quantifiers. Since

there are in total |Π(Q)| ≤ |Q| levels of search, it takes in total O(pm|Q|+ |V |) space.

2

That is, quantified matching can be evaluated following conventional T without

incurring significant extra time and space cost. The performance of DMatch is further

improved by selection and pruning rules.

Ratio aggregates. DMatch can be readily extended to process ratio aggregates. In-

deed, for each pattern e=(u,u′) with σ(e)� p% and at a candidate v of u, DMatch

“transforms” the quantifier to its equivalent numeric counterpart σ(e)� p′ as follows.

(a) DMatch computes |Me(v)| by definition. (2) It sets p′ = b|Me(v)| ∗ p%c. The trans-

formation for e preserves all the exact matches for ratio quantifiers by definition, and

takes a linear scan of G (in O(|G|) time). In addition, QMatch easily extends to QGPs

with quantifiers σ(e)> p, by replacing it with σ(e)≥ p+1.

4.3.2 Incremental Quantified Matching

If Π(Q)(xo,G) is nonempty, QMatch proceeds to compute Π(Q+e)(xo,G) for each

negated edge e∈ E−Q (lines 5-6, Fig. 4.5). Observe the following: (1) Π(Q+e)=Π(Q)⊕
∆E, i.e., Π(Q+e) “expands” Π(Q) with a set ∆E of positive edges; and (2) for any

node u in Π(Q), Π(Q+e)(u,G)⊆Π(Q)(u,G), since Π(Q+e) adds more constraints to

Π(Q).

This observation motivates us to study a novel incremental quantified matching

problem. Given a graph G, a QGP Q, computed matches Q(u,G) for each u in Q,

and a new QGP Q′=Q⊕∆E, it is to compute Q′(xo,G) = Q(xo,G)⊕∆O, i.e., to find

changes ∆O in the output. It aims to make maximum use of cached results Q(u,G),

instead of computing Q′(xo,G) from scratch. As opposed to conventional incremental

problems [RR96a, FWW13], we compute ∆O in response to changes in query Q, rather
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than to changes in graph G.

As observed in [RR96a], the complexity of incremental graph problems should

be measured in the size of affected area, which indicates the amount of work that

is necessarily performed by any algorithm for the incremental problem. For pattern

matching via subgraph isomorphism, the number of verifications is typically the major

bottleneck. Below we identify affected area for quantified matching, to characterize

the optimality of incremental quantified matching.

Optimal incremental quantified matching. Given Q and Π(Q+e), the affected area

is defined as

AFF =
⋃

C(ui)∪{N(v) | v ∈C(ui)},

where (1) ui is in edge ei=(ui,u′i) or (u′i,ui) for each ei ∈ ∆E; (2) C(ui) includes (a) the

match sets cached after DMatch processed Π(Q); and (b) the candidate sets initialized

by QMatch (line 3 of Fig 4.5) for new nodes ui introduced by Π(Q+e), which have to

be checked; and (c) N(v) is the set of nodes in cached C(·) that are reachable from (or

reached by) v, via paths that contains only the nodes in C(·).
An incremental quantified matching algorithm is optimal if it incurs O(|AFF|) num-

ber of verifications. Intuitively, AFF is the set of nodes that are necessarily verified in

response to ∆E, for any such algorithms to find exact matches.

Proposition 14: There exists an incremental algorithm that computes each Π(Q+e)(xo,G)

by conducting at most |AFF| rounds of verification. 2

As a proof, we present an optimal algorithm IncQMatch.

Procedure IncQMatch. Algorithm IncQMatch (used in line 6, Fig. 4.5) incrementally

computes Π(Q+e)(xo,G) by reusing the cached match sets and the counters computed

in the process of DMatch for Π(Q). It works as follows.

(1) IncQMatch initializes Π(Q+e)(u,G) for each u with the cached matches Π(Q)(u,G).

It then computes the edge set ∆E in Π(Q+e)(xo,G) to be “inserted” into Π(Q).

(2) IncQMatch then iteratively processes the edges e=(u,u′) in ∆E. It first identifies

those cached matches that are affected by the insertion. It considers two possible cases

below.

• Both u and u′ are in Π(Q). For each match v ∈ Π(Q)(u,G), IncQMatch adds v

to AFF and verifies whether v matches u via isomorphism following DMatch. If
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pattern node C(·)
xo C(xo)={x2,x3}
z1 C(z1)={v1,v2,v3}
z2 C(z2)={v4}
Redmi C(Redmi 2A)={Redmi 2A}

Table 4.4: Computation of IncQMatch

X(u,v)=true, it counts c(v,e) as the number of v’s children v′ that are matches of

u′ and checks the quantifier of e. If c(v,e) satisfies the quantifier, no change

happens. Otherwise (c(v,e) fails the quantifier) IncQMatch removes v from

Π(Q+e)(u,G).

• One or both of nodes u and u′ are not in Π(Q). For the new node u (or u′),

IncQMatch treats e as a single edge pattern and verifies each candidate v1 in

C(u). Since Π(Q) is a “sub-pattern” of Π(Q+e) and Π(Q+e) is connected, we

need only to inspect those matches v1 reachable from some nodes in cached C(.),

i.e., v1 ∈ N(v2) for some cached v2; hence v1 ∈ AFF.

For each v removed in the steps above, QMatch then propagates the impact recur-

sively by (a) reducing all the counters of v’s parents by 1, and (b) removing invalid

matches due to the updated counters and adds them to AFF, following the same back-

tracking verification as in DMatch, until a fixpoint is reached, i.e., no more matches

can be removed.

Example 20: Continuing with Example 19, QMatch invokes IncQMatch to process

Π(Q+(xo,z2)
3 ), with ∆E = {(xo,z2), (z2, Redmi 2A)} (see Fig. 4.3) as follows. (see

Table 4.4)

(1) IncQMatch first initializes the candidate sets as the cached matches in DMatch

(shown below). For node z2 not in Π(Q), IncQMatch finds C(z2) as initialized in

QMatch.

(2) It starts with edge (z2, Redmi 2A), and initializes AFF as C(z2)∪C(Redmi 2A)={v4,

Redmi 2A}. It next checks whether v4 and Redmi 2A remain matches with counter

satisfying the quantifiers. In this process, it only visits the two cached matches x3 and

v3 following the pattern edges. As both nodes are matches, no change needs to be

made.
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(3) IncQMatch next processes edge (xo,z2). It adds the set C(xo)={x2,x3} to AFF, and

checks whether x2 and x3 remain matches. As x2 has no edge to v4, X(xo,x2) is updated

to false, and x2 is removed from C(xo). It next finds that x3 is a valid match, by visiting

v2,v3, Redmi 2A, and v4.

As no more matches can be removed, IncQMatch stops the verification. It returns

Π(Q+(xo,z2)
3 )(xo,G1) as {x3}. After the process, AFF contains {v4,x2,x3, v2,v3, Redmi

2A}. It incurs in total 3 rounds of verification for v4, x2 and x3. 2

Contrast IncQMatch with DMatch. (1) IncQMatch only visits the cached matches

and their edges, rather than the entire G. (2) IncQMatch incurs at most |AFF| rounds

of verifications; hence it is optimal w.r.t. incremental complexity.

Analysis of QMatch. Algorithm QMatch correctly computes Q(xo,G) following the

definition of quantified matching (Section 4.1.2). For its complexity, observe the fol-

lowing.

(1) If Q is positive, i.e., E−Q = /0, IncQMatch is not needed. Then QMatch and a conven-

tional Match-based algorithm T for subgraph isomorphism have the same complexity.

Quantifier checking is incorporated into the search process.

(2) If E−Q is nonempty, IncQMatch invokes at most |E−Q | rounds of incremental com-

putation by optimal IncQMatch, while |E−Q | ≤ |Q| and Q is typically small in practice.

For each round, the overall time taken is bounded by |AFF| ∗K, where K is the cost

of a single verification.

Put together, QMatch takes O(t(T )+ |E−Q ||AFF| ∗K) time in total, where t(T ) is

the time complexity of a Match-based algorithm T for conventional subgraph isomor-

phism. We find in our experiments that QMatch and T have comparable performance,

due to small |E−Q | and |AFF|. Moreover, existing optimization for T can be readily

applied to QMatch.

Algorithm QMatch also makes use of graph simulation [HHK95] to filter candi-

dates and reduce verification cost.
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4.4 Parallel Quantified Matching

Quantified matching – in fact even conventional subgraph isomorphism – may be cost-

prohibitive over big graphs G. This suggests that we develop a parallel algorithm for

quantified matching that guarantees to scale with big G. We develop such an algo-

rithm, which makes quantified matching feasible in real-life graphs, despite its DP

complexity.

4.4.1 Parallel Scalability

To characterize the effectiveness of parallelism, we recall the notion of parallel scal-

ability introduced in Section 3.4.1. Consider a problem A posed on a graph G. We

denote by t(|A|, |G|) the running time of the best sequential algorithm for solving A

on G, i.e., one with the least worst-case complexity among all algorithms for A. For

a parallel algorithm, we denote by T (|A|, |G|,n) the time it takes to solve A on G by

using n processors, taking n as a parameter. Here we assume n� |G|, i.e., the number

of processors does not exceed the size of G; this typically holds in practice as G often

has trillions of nodes and edges, much larger than n [GBDS14].

Parallel scalability. An algorithm is parallel scalable if

T (|A|, |G|,n) = O(
t(|A|, |G|)

n
)+(n|A|)O(1).

That is, the parallel algorithm achieves a linear reduction in sequential running time,

plus a “bookkeeping” cost O((n|A|)l) that is independent of |G|, for a constant l.

A parallel scalable algorithm guarantees that the more processors are used, the less

time it takes to solve A on G. Hence given a big graph G, it is feasible to efficiently

process A over G by adding processors when needed.

4.4.2 Parallel Scalable Algorithm

Parallel scalability is within reach for quantified matching under certain condition. We

first present some notations. For a node v in graph G and an integer d, the d-hop

neighbor Nd(v) of v is defined as the subgraph of G induced by the nodes within d

hops of v. The radius of a QGP Q(xo) is the longest shortest distance between xo and

any node in Q.

The main result of the section is as follows.
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Theorem 15: There exists an algorithm PQMatch that given QGP Q(xo) and graph G,

computes Q(xo,G). It is parallel scalable for graphs G with ∑v∈G |Nd(v)| ≤Cd ∗ |G|n ,

taking O( t(Q,G)
n +n) time, where d is the radius of Q(xo), Cd is a predefined constant,

and t(Q,G) is the worst-case running time of sequential quantified matching algo-

rithms. 2

The condition is practical: 99% of real-life patterns have radius at most 2 [GFMPdlF11],

and the average node degree is 14.3 in social graphs [BW13]; thus |Nd(v)| is often a

small constant. In addition, we will show that PQMatch can be adapted to evaluate

QGPs Q with radius larger than d.

As a proof, below we present PQMatch. The algorithm works with a coordina-

tor Sc and n workers (processors) Si. It utilizes two levels of parallelism. (a) At the

inter-fragment parallelism level, it creates a partition scheme of G over multiple pro-

cessors once for all, so that quantified matching is performed on all these fragments

in parallel. The same partition is used for all QGPs Q(x0) within radius d. (b) At

the intra-fragment level, local matching within each fragment is further conducted by

multiple threads in parallel.

Hop preserving partition. We start with graph partition. To maximize parallelism, a

partition scheme should guarantee that for any graph G, (1) each of n processors man-

ages a small fragment of approximately equal size, and (2) a query can be evaluated

locally at each fragment without incurring inter-fragment communication. We propose

such a scheme.

Given a graph G = (V,E,L), an integer d and a node set V ′⊆V , a d-hop preserving

partition Pd(V ′) of V ′ distributes G to a set of n processors such that it is

(1) balanced: each processor Si manages a fragment Fi, which contains the subgraph

Gi of G induced by a set Vi of nodes, such that
⋃

Vi=V ′ (i ∈ [1,n]) and the size of Fi is

bounded by c∗ |G|n , for a small constant c <Cd; and

(2) covering: each node v ∈ V ′ is covered by Pd(V ′), i.e., there exists a fragment Fi

such that Nd(v) is in Fi.

We say that Pd(V ′) is complete if |V ′|= |V |.
One naturally wants to find an optimal partition such that the number |V ′| of cov-

ered nodes is maximized. Although desirable, creating a balanced d-hop preserving

partition is NP-hard. Indeed, conventional balanced graph partition is a special case

when d=1, which is already NP-hard [AR06].



Chapter 4. Extending Pattern Matching on GRAPE with Quantifiers 119

Parallel d-hop preserving partition. We provide an approximation algorithm for d-

hop preserving partition with an approximation ratio. Better still, it is parallel scalable.

Lemma 16: If ∑v∈G |Nd(v)| ≤Cd ∗ |G|n , for any constant ε > 0, there is a parallel scal-

able algorithm with approximation ratio 1+ε to compute a d-hop preserving partition.

2

Proof: The d-hop preserving partition problem at the coordinator Sc is to find an as-

signment for each Nd(v) to a worker Si, such that (a) ∑ |Nd(vi)| ≤ c∗ |G|n for all Nd(vi)

assigned to Si, and (b) |Vc| is maximized, where Vc refers the nodes covered in V ′. We

show that the problem is 1+ ε-approximable, by constructing an approximation pre-

serving reduction (APR) to the multiple knapsack problem (MKP). An MKP instance

consists of (1) an item set U , where each item ui has a weight wi and a value, and (2)

a bin set B, where each bin Bi has a capacity bi. It is to find a packing of items to the

bins subject to their capacity, such that the total value is maximized. It is known that

MKP is 1+ ε approximable [CK00].

An APR from I1 to I2 consists of a pair of functions ( f ,g), where f transforms

the instance I1 to I2, g transforms a feasible solution s(I2) for I2 to a feasible solution

s(I1), and if s(I2)≥ s∗(I2)
1+α(ε) given the optimal solution s∗(I2), then g(s(I2))≥ s∗(I1)

1+ε
. We

construct an APR as follows.

• function f : (a) for each v ∈ V ′, construct an item ui with value 1 and weight

|Nd(v)|; and (b) for each worker Si, construct a bin Bi with capacity c∗ |G|n −|Fi|.

• function g: for each item ui packed to a bin Bi in s(I2), g maps ui to vi, and Bi to

Si.

We next show that the transformation above is an APR. Indeed, (1) f is in PTIME,

and (2) for a feasible solution s(I2), g(s(I1)) is also a feasible solution, since the pack-

ing does not exceed the capacity constraints in s(I2) if and only if the assignment

g(s(I1)) does not exceed the capacity of each fragment. (3) Assume s(I2) ≥ s∗(I2)
1+ε

(α=1). One can verify that |s∗(I1)|= |Vc| (the size of covered nodes) = |g(s∗(I2)| (the

size of packed items), |s(I1)| = |g(s(I2)|. Hence g(s(I2))=s(I1)≥ s∗(I2)
1+ε

=g(s∗(I2))
1+ε

. Thus,

the transformation is an APR. As a result, from [CK00] it follows that d-hop preserving

partition is 1+ ε approximable.

Remarks. We use a balanced bound for all fragments. This guarantees the correctness

of the reduction to MKP. The choice of MKP is to get a balanced fragment bound and

at the same time, to minimize synchronization cost. Our experimental study shows that
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this leads to quite balanced fragments (Exp-2), with minimum communication cost.

2

Below we present such an algorithm, denoted by DPar. Given a graph G stored

at the coordinator Sc, it starts with a base partition of G, where each fragment Fi has

a balanced size bounded by c ∗ |G|n . This can be done by using an existing balanced

graph partition strategy (e.g., [Kar11]). DPar then extends each fragment Fi to a d-hop

preserving counterpart.

(1) It first finds the “border nodes” Fi.O of Fi that have d-hop neighbors not residing in

Fi, by traversing Fi in parallel.

(2) Each worker Si then computes and loads Nd(v) for each v ∈ Fi.O, by “traversing”

G via disk-based parallel breadth-first search (BFS) search [Kor08].

Moreover, DPar uses a balanced loading strategy (see below) to load approximately

equal amount of data to each worker in the search. The process repeats until no frag-

ments can be expanded.

Balancing strategy. DPar enforces a balanced fragment size c ∗ |G|n . It conducts a d-

hop preserving partition Pd(V ′) with approximation ratio 1− ε subject to the bound,

for any given ε. That is, if the size of nodes covered by the optimal d-hop partition in

G is |V ∗|, then Pd(V ′) has |V ′| ≥ (1− ε)|V ∗|.
More specifically, at the BFS phase, for each v ∈

⋃
Fi.O, DPar assigns Nd(v)’s to

workers by reduction to Multiple Knapsack problem (MKP) [CK00]. Given a set of

weighted items (with a value) and a set of knapsack with capacities, MKP is to assign

each item to a knapsack subject to its capacity, such that the total value is maximized.

DPar treats each Nd(v) as an item with value 1 and weight |Nd(v)|, and each fragment

as a knapsack with capacity c ∗ |G|n − |Fi|, with the number of covered nodes as the

total value. It solves the MKP instance by invoking the algorithm of [CK00], which

computes an assignment with approximation ratio 1+ ε for any given ε, in O(|V ′| 1ε )
time. Each worker Si then loads its assigned Nd(v). This gives us a d-hop preserving

partition Pd with ratio 1+ ε.

Partition Pd may not be complete, i.e., not every node in V is covered. To maxi-

mize inter-fragment parallelism, DPar “completes” Pd while preserving the balanced

partition size. For each uncovered node v, it assigns Nd(v) to a worker Si that mini-

mizes estimated size difference |Fmax| − |Fmin|, where Fmax (resp. Fmin) is the largest

(resp. smallest) fragment if Nd(v) is merged to Fi. Since ∑ |Nd(v)| ≤ Cd ∗ |G|n , this
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Algorithm PQMatch

Input: QGP Q(xo), graph G, coordinator Sc, n workers S1, . . . ,Sn

Output: the answer set Q(xo,G).

1. DPar(G); /*Preprocessing*/

/*executed at coordinator Sc*/

2. Q(xo,G):= /0; post Q to each worker;

3. if every worker Si returns answer Q(xo,Fi) then
4. Q(xo,G):=

⋃
Q(xo,Fi);

5. return Q(xo,G);

/*executed at each worker in parallel*/

6. Q(xo,Fi):= mQMatch(b,Q,Fi); /* b: the # of threads*/

7. return Q(xo,Fi);

Figure 4.6: Algorithm PQMatch

suffices to make Pd both complete and d-preserving.

Example 21: Consider graph G2 of Fig. 4.2 and a set V ′ = {v5, . . . ,v9}. Assume a

base partition distributes {v5} to worker S1, {v7,v9} to S2, {v6,v8} to S3, respectively.

DPar creates a 1-hop preserving partition P1 for V ′ as follows. (1) Each Si identifies

its border nodes Fi.O by a local traversal, e.g., v5 ∈ F1.O. (2) Each Si traverses G2 at Sc

and finds N1(v) for v∈ Fi.O, in parallel. At the end, Sc keeps track of the nodes (edges)

“requested” by workers as follows.

node requested by

x4 S1,S3

x5, x6, prof. S2,S3

PhD. S1,S2,S3

Table 4.5: Vertex requests in DPar

DPar next determines which site to send the border nodes by solving an MKP

instance, shown as follows.

Here N1(v5) includes three nodes x4,v5, PhD, and three edges (x4,v5), (v5, PhD) and
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site N1(·) (estimated) |Fi|
S1 N1(v5), N1(v9) 14 (|N1(v5)| = 6, |N1(v9)| = 8)

S2 N1(v7) 8

S3 N1(v8) 15

Table 4.6: Cost estimation in DPar

(x4, PhD); similarly for the others. This induces a 1-hop preserving partition P1

that covers {v5,v7,v8,v9}. To complete P1, DPar selects S2 to load N1(v6), where

|N1(v6)| = 15. This minimizes the estimated size |Fmax|− |Fmin| = 19− 14 = 5. Here

|Fmax| is estimated as the sum of |F2|= 8 and 11 additional nodes and edges in N1(v6)

that are not “requested” by S2 (e.g., (x4,v6), (v6, PhD)). The completed P1 covers V ′

with fragment size 14, 19 and 15 for S1,S2 and S3, respectively. 2

Parallel algorithm. Using DPar, we next develop algorithm PQMatch. As shown in

Fig. 4.6, PQMatch takes as input a QGP Q(xo) of radius at most d, and a graph G

distributed across n workers by DPar, where fragment Fi of G resides at worker Si.

It works as follows. (1) The coordinator Sc posts Q(xo) to each worker Si (line 2).

(2) Each worker Si then invokes a procedure mQMatch to compute local matches

Q(xo,Fi) (line 7), where mQMatch implements QMatch using multi-threading (see

below). Once verified, Q(xo,Fi) is sent to Sc (line 6). (3) Once all the workers have

sent their partial matches to Sc, the coordinator computes Q(xo,G) as the union of all

Q(xo,Fi) (lines 3-4).

Procedure mQMatch. Procedure mQMatch is a multi-threading implementation of

PQMatch (Section 4.3), supporting inter-fragment level parallelism.

For pattern edge e = (u,u′) with quantifier σ(e)� p and a candidate v in C(u), it

spawns p threads to simultaneously verify the top p selected candidates, one for each.

Each thread i maintains local partial matches (in its local memory). When all the p

threads backtrack to v, the local partial matches are merged, and the local counter of u

is updated by aggregating the local storage of each thread i.

From Lemma 16 and Lemma 17 below, Theorem 15 follows. We remark that G is

partitioned once by using a d-hop preserving partition process. Then for all QGPs with

radius within d, no re-partitioning is needed. That is, condition ∑ |Nd(v)| ≤Cd ∗ |G|n is

needed only for d-hop preserving partition to be parallel scalable.

Lemma 17: Given G distributed over n processors by a d-hop preserving partition Pd ,
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(1) Q(xo,G) =
⋃

i∈[1,n] Q(xo,Fi), and (2) mQMatch is parallel scalable for all QGPs

Q(xo) with radius bounded by d. 2

Proof: We prove Theorem 15 by providing the correctness and complexity analysis

below for algorithm PQMatch.

Correctness. Given graph G distributed over n processors by a d-hop preserving par-

tition Pd , PQMatch computes Q(xo,G) as
⋃

Q(xo,Fi) (i ∈ [1,n]), for any QGP Q(xo)

with radius bounded by d. It suffices to show Lemma 17(1).

Lemma 17(1). Observe the following. (1) For any match vx ∈ Q(xo,Fi), QMatch only

needs to visit Nd(vx) to verify whether vx is a match. (2) For every candidate vx ∈C(xo),

there exists a fragment Fi, such that Nd(vx)⊆ Fi (including vx) (by d-hop preservation).

Hence, any match of xo must be from at least one match set Q(xo,Fi) evaluated at

fragment Fi, i.e., Q(xo,G)⊆
⋃

Q(xo,Fi) (i ∈ [1,n]). (3) For every match vx ∈ Q(xo,Fi)

locally computed at Fi, vx is a match of xo guaranteed by the correctness of QMatch.

Hence PQMatch correctly computes Q(xo,G) as
⋃

Q(xo,Fi) (i ∈ [1,n]) over a d-hop

preserving partition.

Complexity. Algorithm PQMatch consists of three steps: (1) the distribution of Q

and construction of d-hop preserving partition, (2) the parallel evaluation, and (3) as-

sembling of partial matches. The time for step (2) and (3) are in O( t(Q,G)
n ) and O(n),

respectively, i.e., are parallel scalable.

Hence it suffices to focus on the parallel scalability of step (1), by proving Lemma 16

and Lemma 17(2).

Lemma 16 (Parallel scalability of DPar). We first show that procedure DPar is parallel

scalable. We will show the approximation ratio of DPar separately in the next proof.

Observe the following. (1) For each worker Si managing a fragment Fi in the base

partition, the border nodes Fi.O can be computed via a linear scan of Fi. Hence the

overall time is in O(|Cd ∗ |G|n |) by the condition of Lemma 16. (2) Given V ′=
⋃

Fi.O,

DPar applies the (1+ε) approximation algorithm of [CK00], which computes an as-

signment in time O(|V ′| 1ε ). For ε small enough for a good approximation, e.g., ε=1,

the time cost is O(|V ′|). Since |V ′|=∑Fi.O≤ ∑Nd(v) (v ∈V ′), and ∑Nd(v) is bounded

by O(Cd ∗ |G|n ), the process takes time in O(Cd ∗ |G|n )= O( |G|n ). (3) For each border node

v ∈ Fi.O, each Si fetches Nd(v) from G in parallel. In the worst case, each worker takes

in total O(∑ |Nd(v)|) time for all the border nodes v ∈ Fi.O. As the fetch process is

bounded by O(Cd ∗ |G|n ) at each fragment, the overall parallel partition time is bounded



Chapter 4. Extending Pattern Matching on GRAPE with Quantifiers 124

by O(Cd ∗ |G|n )=O( |G|n ). Hence, DPar is parallel scalable.

Lemma 17(2) (Parallel scalability of mQMatch). Procedure mQMatch is conducted

locally in parallel at each worker. From the correctness of Lemma 17(1), each worker

only performs local matching without the need to communicate with others once DPar

terminates. Hence, the overall time complexity is O( t(Q,G)
n ). The time cost for merging

the answers is in O(n) time. Putting these together, PQMatch is in O( t(Q,G)
n )+O(n)

time. Lemma 17(2) thus follows, and so does the parallel scalability of PQMatch. 2

Remark. Algorithm PQMatch can be easily adapted to dynamic query load and

graphs. (1) For a query with radius d′ > d, each worker Si incrementally computes

Nd′−d(v) for each node v∈ Fi.O, via the balanced parallel BFS traversal. (2) When G is

updated, coordinator Sc assigns the changes (e.g., node/edge insertions and deletions)

to each fragment. Each worker then applies incremental distance querying [FWW13]

to maintain Nd(v) of all affected v ∈ Fi.O for i ∈ [1,n].
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Figure 4.7: QGARs

4.5 Quantified Association Rules

As an application of QGPs, we introduce a set of graph association rules (QGARs) with

counting quantifiers, to identify regularity between entities in graphs in general, and

potential customers in social graphs in particular.

QGARs. A quantified graph association rule R(xo) is defined as Q1(xo)⇒ Q2(xo),

where Q1 and Q2 are QGPs, referred to as the antecedent and consequent of R, respec-

tively.

The rule states that for all nodes vx in a graph G, if vx ∈Q1(xo,G), then the chances

are that vx ∈ Q2(xo,G).

Using QGPs, QGAR R can express positive and negative correlations [WZZ04]

and social influence patterns with statistical significance [GBL08], which are useful in

targeted advertising. (1) If Q2 is a positive QGP, R(xo) states that if xo satisfies the

conditions in Q1, then “event” Q2 is likely to happen to xo. For instance, Q2(xo) may

be a single edge buy(xo,y) indicating that xo may buy product y. In a social graph G,

R(xo,G) identifies potential customers xo of y. (2) When Q2 is, e.g., a single negated

edge buy(xo,y), R(xo) suggests that no vx in Q1(xo,G) will likely buy product y.

Example 22: A positive QGAR R1(xo): Q1(xo)⇒ buy(xo) is shown in Fig. 4.7, where

Q1 is the QGP given in Example 14, and Q2 is a single edge buy(xo) (depicted as a

dashed edge). It states that if xo is in a music club and if 80% of people whom xo

follows like an album y, then xo will likely buy y.

A negative QGAR R2 is also shown in Fig. 4.7, where Q2 is a single negative edge

follow(xo,y). The QGAR states that if xo and y actively (≥ k) tweet on competitive

products (e.g., “Mac” vs “PC”), then xo is unlikely to follow y. Intuitively, R2 demon-

strates “negative” social influence [GBL08].
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As another example, R3 of Fig. 4.7 is a rule in which Q2 consists of multiple nodes.

Here Q1 in R3 specifies users xo who actively promote mobile phone Redmi 2 and

influence other users; and Q2 predicts the impact of xo on other users for a new release

Redmi 2A. Putting these together, R3 states that if xo is influential over an earlier

version, then xo is likely to promote the selling of a new release [AJ08]. Intuitively, Q1

identifies xo as “leaders” [GBL08], who are often targeted by companies for promotion

of a product series [AJ08].

To the best of our knowledge, these QGARs are not expressible as association rules

studied so far (e.g., [GTHS13, FWWX15]).

QGARs also naturally express conventional association rules defined on itemsets.

For instance, milk,diaper ⇒ beer is depicted as QGAR R4(xo) in Fig. 4.7. It finds

customers xo who, if buy milk and diaper, are likely to purchase beer. 2

For real-world applications (e.g., social recommendation), we consider practical

and nontrivial QGARs by requiring: (a) Q1 and Q2 are connected and nonempty (i.e.,

each of them has at least one edge); and (b) Q1 and Q2 do not overlap, i.e., they do not

share a common edge. We treat R as a QGP composed of both Q1 and Q2 such that in

a graph G,

R(xo,G) = Q1(xo,G)∩Q2(xo,G).

Interestingness measure. To identify interesting QGARs, we define the support and

confidence of QGARs.

Support. Given a QGAR R(xo) and a graph G, the support of R in G, denoted as

supp(R,G), is the size |R(xo,G)|, i.e., the number of matches in Q1(xo,G)∩Q2(xo,G).

We justify the support with the result below, which shows its anti-monotonicity for

both pattern topology and quantifiers.

Lemma 18: For any extension R′ of R by (1) adding new edges (positive or negative)

to Q1 or Q2, or (2) increasing p in positive quantifiers, |supp(R′,G)| ≤ |supp(R,G)|.
2

Confidence. We follow the local close world assumption (LCWA) [Don14], assuming

that graph G is locally complete, i.e., either G includes the complete neighbors of a

node for any known edge type, or it has no information about these neighbors. We

define the confidence of R(xo) in G as

conf(R,G) =
|R(xo,G)|

|Q1(xo,G)∩Xo|
,
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where Xo is the set of candidates of xo that are associated with an edge of the same type

for every edge e=(xo,u) in Q2. Intuitively, Xo retains those “true” negative examples

under LCWA, i.e., those that have every required relationship of xo in Q2 but are not a

match.

One might be tempted to define the confidence of R(xo) as |R(xo,G)|
|Q1(xo,G)| , following

traditional association rules [SA96]. However, this does not work well in incomplete

graphs.

Example 23: For QGAR R1, consider two matches v1 and v2 in Q1(xo,G), where

user v1 has no edge labeled buy, and v2 has a buy edge connected to a book. Since

G is usually incomplete, it is an overkill to assume that v1 is a negative example as a

potential customer of books, since some of its buy edges may possibly be missing from

G. 2

To accommodate incomplete graphs, we follow the local close world assumption

(LCWA) [Don14], which assumes that G is locally complete, i.e., either G includes the

complete neighbors of a node for any existing edge type, or it knows nothing about

the neighbors. We define conf(R,G), the confidence of R(xo) in G under LCWA, as
|R(xo,G)|

|Q1(xo,G)∩Xo| .

Continuing with Example 23, user v2 is retained in Xo but v1 is excluded due to

missing buy edges. Hence, v1 is no longer considered to be a negative match under

LCWA.

Quantified entity identification. We want to use QGARs to identify entities of inter-

ests that match certain behavior patterns specified by QGPs. To this end, we define

the set of entities identified by a QGAR R(xo) in a (social or knowledge) graph G with

confidence η as follows:

R(xo,η,G) = {vx | vx ∈ R(xo,G),conf(R,G)≥ η},

i.e., entities identified by R if its confidence is above η.

We study the quantified entity identification (QEI) problem: Given a QGAR R(xo),

graph G, and a confidence threshold η > 0, it is to find all the entities in R(xo,η,G).

The QEI problem is DP-hard, as it embeds the quantified matching problem, which

is DP-hard (Theorem 9). However, the (parallel) quantified matching algorithms for

QGPs can be extended to QEI, without incurring substantial extra cost. Denote as

t(|Q|, |G|) the cost for quantified matching of QGP Q in G. Then we have the follow-

ing.
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Corollary 19: There exist (1) an algorithm to compute R(xo,η,G) in O(t(|R|, |G|))
time; and (2) a parallel scalable algorithm to compute R(xo,η,G) in O( t(|R|,|G|)

n + n)

time with n processors, under the condition of Theorem 15. 2

Proof: As a constructive proof, we outline two algorithms for computing R(xo,η,G)

with the desired complexity as follows.

Sequential quantified entity matching. Given a QGAR R, confidence threshold η and

G, the first algorithm, denoted as garMatch, (1) invokes QMatch to compute Q1(xo,G)

and Q2(xo,G), respectively; (2) computes R(xo,G) = Q1(xo,G)∩Q2(xo,G); and (3)

verifies whether conf(R)= |R(xo,G)|
|Q1(xo,G)∩Xo| ≥ η. If so, it returns R(xo,G).

The correctness and complexity of garMatch follow from their QMatch counter-

parts (Lemmas 13 and 14). That is, garMatch is in O(t(|R|, |G|)) time, where t(|R|, |G|)
is the complexity of a quantified matching algorithm (QMatch).

Parallel quantified entity matching. We introduce an algorithm, denoted as dgarMatch,

for parallel quantified entity matching. It follows the generic steps of PQMatch. The

only difference is as follows: (a) each worker evaluates two patterns Q1 and Q2 in

parallel, and (b) the coordinator Sc assembles the results to evaluate the confidence of

R.

Algorithm dgarMatch starts with a set of base partitions. (1) It constructs a d-hop

preserving partition, where d is a predefined upper bound of the largest radius Q1 and

Q2 in R. (2) Each worker then computes local match Q1(xo,Fi) and Q2(xo,Fi) in paral-

lel. It also computes the local set Xoi. (3) Each worker returns the local matches to the

coordinator Sc. Then dgarMatch computes R(xo,G) as (
⋃

Q1(xo,Fi))\ (
⋃

Q2(xo,Fi)),

and computes the confidence conf(R,G) as |R(xo,G)|
|
⋃

Q1(xo,Fi)∩
⋃

Xoi| . It next verifies whether

conf(R,G)≥ η and if so, returns R(xo,G). Otherwise, it returns /0.

The correctness and complexity of dgarMatch follow from their PQMatch coun-

terparts. More specifically, (1) dgarMatch takes O( t(|R|,|G|)
n + n) time to compute the

local matches for Q1 and Q2 in parallel, and (2) the verification of the confidence is in

O(n) time. Hence, dgarMatch computes R(xo,η,G) in O( t(|R|,|G|)
n + n) time using n

processors. It is thus parallel scalable by definition. 2
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4.6 Experimental Study

We conducted three sets of experiments to evaluate (1) the scalability and (2) parallel

scalability of our quantified matching algorithms, and (3) the effectiveness of QGAR

for identifying correlated entities in large real-world graphs.

Experimental setting. We used two real-life graphs: (a) Pokec [Pok], a social network

with 1.63 million nodes of 269 different types, and 30.6 million edges of 11 types, such

as follow, like; and (b) YAGO, an extended knowledge base of YAGO [SKW07] that

consists of 1.99 million nodes of 13 different types, and 5.65 million links of 36 types.

We also developed a generator to produce synthetic social graphs G = (V,E,L),

controlled by the numbers of nodes |V | (up to 50 million) and edges |E| (up to 100

million), with L drawn from an alphabet L of 30 labels. The generator is based on

GTgraph [BM] following the small-world model.

Pattern generator. For real-life graphs we generated QGPs Q controlled by |VQ| (size

of pattern nodes), |EQ| (pattern edges), p% (in quantifiers) and |E−Q | (size of negated

edges). (1) We first mined frequent features, including edges and paths of length up to

3 on each of Pokec and YAGO. We selected top 5 most frequent features as “seeds”, and

combined them to form the stratified pattern Qπ of |VQ| nodes and |EQ| edges. (2) For

frequent pattern edges e=(u,u′), we assigned a positive quantifier σ(e) ≥ p%, where

p% is initialized as 30% unless otherwise specified. This completes the generation of

Π(Q). (3) We added |E−Q | negated edges to Π(Q) between randomly selected node

pairs (u,u′), to complete the construction of Q. For synthetic graphs, we generated 50

QGPs with labels drawn from L .

We denote by |Q| = (|VQ|, |EQ|, pa, |E−Q |) the size of QGP Q, where pa is the average

of p in all its quantifiers.

Algorithms. We implemented the following algorithms, all on GRAPE.

(1) Algorithm QMatch, versus (a) QMatchn, a revision of QMatch that processes

negated edges using DMatch, not the incremental IncQMatch, and (b) Enum, which

adopts a state-of-the-art subgraph isomorphism algorithm [RW15] to enumerate all

matches first, and then verify quantifiers.

(2) Algorithm PQMatch, versus (a) PQMatchs, its single-thread counterpart, (b) PQMatchn,

the parallel version of QMatchn, and (c) PEnum, a parallel version of Enum, which first

invokes a parallel subgraph listing algorithm [SCC+14] to enumerate all matches, and
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Figure 4.8: Response time and scalability for quentified match

then verifies quantifiers. We also implemented (d) DPar for d-hop preserving partition.

We deployed the parallel algorithms over n processors for n ∈ [4,20]. Each experi-

ment was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Performance of QMatch. We first evaluated the performance of QMatch

compared with QMatchn and Enum. Fixing |Q|=(5,7,30%,1), i.e., patterns with 5

nodes and 7 edges, with pa = 30% and one negative edge, Figure 4.8(a) reports the

performance of QMatch over two real-world graphs Pokec and YAGO, and a larger

synthetic graph Gs of 50 million nodes and 100 million edges. We find the following.

(1) QMatch outperforms the other algorithms. It is on average 1.2 and 2.0 times faster

than QMatchn and Enum over YAGO, 1.3 and 2.0 times faster over Pokec, and 1.3

and 2.6 times faster over Gs, respectively. This verifies that our optimization strategies

effectively reduce the verification cost.

(2) QMatch works reasonably well over real-world social and knowledge graphs.

It takes up to 150 (resp. 116) seconds over Pokec (resp. YAGO), comparable to con-

ventional subgraph isomorphism without quantifiers.

Exp-2: Scalability of PQMatch. This set of experiments evaluated the scalability

of parallel algorithm PQMatch, compared to PQMatchn, PQMatchs, and PEnum. In

these experiments, we fixed |Q| = (6,8,30%,1), d = 2 for d-hop preserving partition

and b = 4 for the number of threads in intra-fragment parallelism, unless stated other-

wise.

Varying n (PQMatch). We varied the number n of processors from 4 to 20. As shown
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Figure 4.9: Parallel scalability of PQMatch

in Fig. 4.9(a) (resp. Fig. 4.9(b)) over Pokec (resp. YAGO), (1) PQMatch and PQMatchs

scale well with the increase of processors: for PQMatch, the improvement is 2.8

(resp. 3.2) times when n increases from 4 to 20; this verifies Theorem 15; (2) PQMatch

is 3.8 (resp. 5.8) times faster than PEnum; and (3) with optimization strategies (incre-

mental evaluation and multi-threads), PQMatch outperforms PQMatchn and PQMatchs

by 1.5 (resp. 1.1) times and 2.8 (resp. 2.3) times, respectively. (4) PQMatch works rea-

sonably well on large graphs. With 20 processors, it takes 40.3 (resp. 10.2) seconds on

Pokec (resp. YAGO).
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Figure 4.10: Impact of negative edges and aggregate on PQMatch

Varying n (DPar). We also evaluated the scalability of DPar for d-hop preserving par-

tition, with d = 2 and d = 3. As shown in Figures 4.9(c) and 4.9(d), (1) DPar scales

well with n: when d=2, the improvement is 3.5 (resp. 2.5) times when n increases from

4 to 20 over Pokec (resp. YAGO).

(2) The fragments are well balanced: the “skew” (the ratio of the size of the smallest

fragment to the largest one) is at least 80% when n=8, for both Pokec and YAGO.

These justify the parallel scalability of DPar andPQMatch.

Varying |Q|. Fixing pa = 30%, |E−Q | = 1 and n = 8, we varied (|VQ|, |EQ|) from (4, 6)

to (8, 10) (resp. (3, 5) to (7, 9)) on Pokec (resp. YAGO). As shown in Figures 4.9(e)

and 4.9(f), (1) the larger |Q| is, the longer time is taken by all the algorithms, as ex-

pected. (2) PQMatch works well on real-life queries. For queries with 5 nodes and 7

edges (close to real-world queries), it takes up to 35 (resp. 16.3) seconds over Pokec

(resp. YAGO). It works better on sparse YAGO than on Pokec. (3) PQMatch outper-

forms the other algorithms, consistent Figures 4.9(a) and 4.9(b).

Varying |E−Q |. We also studied the impact of the number of negated edges. The purpose
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of this test is to evaluate the effectiveness of incremental matching strategy IncQMatch.

Fixing n = 8, (|VQ|, |EQ|) = (6,8) and pa = 30%, we varied |E−Q | from 0 to 4

by selecting |E−Q | edges e and “negating” them by setting σ(e) = 0. As shown in

Figures 4.10(a) and 4.10(b), (1) PQMatch and PQMatchs are rather indifferent to

the change of |E−Q |, which incurs small extra cost due to their incremental strategy

(IncQMatch).

(2) In contrast, PQMatchn and PEnum are more sensitive to the increment of |E−Q |.
Both algorithms, without IncQMatch, always recompute the matches of pattern Q+e

for each negated edge e ∈ E−Q , and hence take more time over larger |E−Q |. The im-

provement of PQMatch over PQMatchn and PEnum becomes more significant (from

1.1 to 2 times, and 3.1 to 5 times) with larger |E−Q | (from 1 to 4) over Pokec. These

results verify the effectiveness of IncQMatch.

Varying pa. Fixing n=8, |E−Q | = 1 and (|VQ|, |EQ|) = (6,8) (resp. (5, 7)) for Pokec

(resp. YAGO), we evaluated the impact of aggregates by varying pa from 10% to 90%.

As shown in Figures 4.10(c) and 4.10(d), (1) with larger pa, PQMatch, PQMatchs and

PQMatchn take less time, since more candidates are pruned in the verification process.

(2) In contrast, PEnum is indifferent to the change of pa, since it always enumerates all

the matches regardless of pa. This verifies the effectiveness of the pruning strategies

of PQMatch.

Observe that PQMatch is less sensitive than PQMatchn to pa. When pa is small,

the overhead of PQMatchn incurred by the recomputation of Q+e for negated edges e

is larger, since a large number of candidates need to be verified. With larger pa (more

strict quantifiers), the overhead reduces due to the effective pruning of candidates by

PQMatchn. This explains the comparable performance of PQMatch and PQMatchn

when pa is large (e.g., pa=0.9).

Varying |G|. Fixing n = 4, we varied |G| from (10M,20M) to (50M,100M) using

synthetic social graphs. As shown in Fig. 4.8(b), (1) PQMatch scales well with |G|
and is feasible on large graphs. It takes 125 seconds when |G| = (50M,100M). (2)

PQMatch is 1.5, 2.3 and 4.7 times faster than PQMatchn, PQMatchs and PEnum on

average, respectively.

Exp-3: Effectiveness of QGAR. We also evaluated the effectiveness of QGARs. We

developed a simple QGAR mining algorithm by extending the algorithm of [FWWX15]

for mining graph pattern association rule (GPARs). GPARs are a special case of QGARs

Q1(xo)⇒Q2(xo) that have no quantifiers and restrict Q2 to a single edge. (1) We mined
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Figure 4.11: Real-world QGARs

a set of top GPARs using [FWWX15] over Pokec and YAGO, for confidence threshold

η= 0.5. For each GPAR R, we initialized a QGAR R′. (2) We extended Q2 in each R′ by

adding frequent edges whenever possible, and by gradually enlarging pa for frequent

edges by increment 10% (1 for numeric aggregates). We stopped when the confidence

of R′ got below η. We show three QGARs in Fig. 4.11, illustrated as follows.

(1) R5 (Pokec) says that if a user has “long-distance” friends, i.e., at least two of her

friends do not live in the same city “Presov” where she lives, then the chances are that

they share the hobby of traveling. We found 50 matches in Pokec.

(2) R6 (Pokec; confidence 0.8) demonstrates a negative pattern: for a user xo, if more

than half of his friends share the same hobby “PC Games”, and none of them like

sports, then it is likely xo does not like sports. R6 has support 4000.

(3) R7 (YAGO; confidence 0.75) states that if a US professor (a) won at least two

academic prizes, and (b) graduated at least 4 students, then the chances are that at

least one of her/his students is not a US citizen. It discovers scientists such as Marvin

Minsky (Turing Award 1969) and Murray Gell-Mann (Nobel Prize Physics 1969) from

YAGO. Here Q2 in R7 has three (dashed) edges, as opposed to GPARs [FWWX15].

These QGARs demonstrate quantified correlation between the entities in social and

knowledge graphs, which cannot be captured by conventional association rules and

GPARs [FWWX15].

Summary. We find the following. Over real-life graphs, (1) quantified matching is

feasible: PQMatch (with 20 processors) and QMatch took 40.3s and 342s on Pokec,

and 10.2s and 116s on YAGO, respectively. (2) Better still, PQMatch and DPar are

parallel scalable: their performance is improved by 3 times on average with workers

increased from 4 to 20. (3) Our optimization techniques improve the performance of
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QMatch and PQMatch by 1.27 and 1.3 times on average, and 2.2 and 4.5 times over

Enum and PEnum, respectively.

(4) QGARs capture behavior patterns that cannot be expressed with conventional

graph patterns.



Chapter 4. Extending Pattern Matching on GRAPE with Quantifiers 136

4.7 Related Work

We categorize the related work to this chapter as follows.

Quantified graph querying. The need for counting in graph queries has long been rec-

ognized. SPARQLog [LLP10] extends SPARQL with first-order logic (FO) rules, in-

cluding existential and universal quantification over node variables. Rules for social

recommendation are studied in [LAR00], using support count as constraints. QGRAPH

[BIJ02] annotates nodes and edges with a counting range (count 0 as negated edge) to

specify the number of matches that must exist in a database. Set regular path queries

(SRPQ) [LSZD13] extends regular path queries with quantification for group selection,

to restrict the nodes in one set connected to the nodes of another. For social networks,

SocialScope [AYLY09] and SNQL [SMGW11] are algebraic languages with numeric

aggregates on node and edge sets.

The study of QGPs is to strike a balance between the expressivity and the com-

plexity. It differs from the prior work in the following. (1) Using a uniform form

of counting quantifiers, QGPs support numeric and ratio aggregates (e.g., at least

p friends and 80% of friends), and universal (100%) and existential quantification

(≥ 1). In contrast, previous proposals do not allow at least one of these. (2) We

focus on graph pattern queries, which are widely used in social media marketing

and knowledge discovery; they are beyond set regular expressions [LSZD13] and

rules of [LAR00]. (3) Quantified matching with QGPs is DP-complete at worst,

slightly higher than conventional matching (NP-complete) in the polynomial hierar-

chy [Pap03]. In contrast, SPARQL and SPARQLog are PSPACE-hard [LLP10], and

SRPQ takes EXPTIME [LSZD13]; while the complexity bounds for QGRAPH [BIJ02],

SocialScope [AYLY09] and SNQL [SMGW11] are unknown, they are either more ex-

pensive than QGPs, (e.g., QGRAPH is a fragment of FO(count)), or cannot express

numeric and ratio quantifiers [AYLY09, SMGW11]. (4) No prior work has studied

parallel scalable algorithms for its queries.

Parallel pattern matching. A number of (parallel) matching algorithms have been de-

veloped for subgraph isomorphism [RW15, HAR11, LHKL12]. None of these ad-

dresses quantifiers. In contrast, (1) in the same general framework [LHKL12] used

by these methods, our sequential quantified matching algorithms cope with quantifiers

and negated edges without incurring considerable cost; and (2) our parallel scalable al-

gorithms exploit both inter and intra-fragment parallelism for effective quantifier veri-

fication in QGP evaluation.
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Various strategies have been studied for graph partition [Kar11, AR06, BLV14].

This work differs from the prior work in the following. (1) We propose a d-hop pre-

serving partition scheme such that the d-hop neighbor of each node is contained in

a fragment, and that all fragments have an even size, with an approximation bound.

Closest to ours is the n hop-guarantee partition [HAR11]. However, [HAR11] pro-

vides no approximation bound to ensure both d-hop preserving and balanced fragment

sizes, especially for nodes with a high degree.

(2) We propose a partition algorithm that is parallel scalable, a property that is not

guaranteed by the prior strategies.

Quantified association rules. Association rules [AIS93] are traditionally defined on

relations of transaction data. Over relations, quantified association rules [SA96] and

ratio rules [KLKF98] impose value ranges or ratios (e.g., the aggregated ratio of two

attribute values) as constraints on attribute values. There has also been recent work

on extending association rules to social networks [SHJS06, LAR00] and RDF knowl-

edge bases, which resorts to mining conventional rules and Horn rules (as conjunctive

binary predicates) [GTHS13] over tuples with extracted attributes from social graphs,

instead of exploiting graph patterns. Closer to this work is [FWWX15], which defines

association rules directly with patterns without quantifiers.

Our work on QGARs differs from the previous work in the following. (1) As op-

posed to [AIS93, SA96, KLKF98], QGARs extend association rules from relations to

graphs. They call for topological support and confidence metrics, since the conven-

tional support metric is not anti-monotonic in graphs. (2) QGARs allow simple yet

powerful counting quantifiers to be imposed on matches of graph patterns, beyond at-

tribute values. In particular, rules of [SA96, KLKF98] cannot express universal quan-

tification and negation. When it comes to graphs, (3) the rules of [FWWX15] cannot

express counting quantifiers, and limits their consequent to be a single edge, and (4)

applying QGPs and QGARs becomes an intractable problem, as opposed to PTIME for

conventional rules in relations.
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4.8 Summary

In this chapter, we have proposed quantified matching, by extending traditional graph

patterns with counting quantifiers. We have also studied important issues in connection

with quantified matching, from complexity to algorithms to applications. The novelty

of this chapter consists in quantified patterns (QGPs), quantified graph association

rules (QGARs), and algorithms with provable guarantees (e.g., optimal incremental

matching and parallel scalable matching). Our experimental study has verified the

effectiveness of QGPs and the feasibility of quantified matching in real-life graphs.

Quantified graph pattern matching opens new areas for the applications on GRAPE.

With its expressive power, GRAPE is able to resolve more complex problems such as

accurately entity identification, customer recommendations.



Chapter 5

Functional Dependencies on Graphs

To make practical use of big data on GRAPE, we have to cope with not only its quantity

but also its quality. Query answers computed upon dirty data may not be correct and

even do more harm than good.

To catch inconsistencies in graphs, we propose a class of functional dependencies

for graphs in this chapter. We give the formulation and settle the classical problems for

reasoning about GFDs. In addition, we make use of GFDs to catch errors in real-life

graphs to verify its effectiveness.

139
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Data dependencies have been well studied for relational data. In particular, our

familiar functional dependencies (FDs) are found in every database textbook, and have

been extended to XML [AL04]. Their revisions, such as conditional functional depen-

dencies (CFDs) [FGJK08], have proven effective in capturing semantic inconsistencies

in relations [FG12].

The need for FDs is also evident in graphs, a common source of data. Unlike rela-

tional databases, real-life graphs typically do not come with a schema. FDs specify a

fundamental part of the semantics of the data, and are hence particularly important to

graphs. Moreover, (1) FDs help us detect inconsistencies in knowledge bases [SSW09],

which need to be identified as violations of dependencies [FG12]. (2) For social net-

works, FDs help us catch spams and manage blogs [CSYP12].

Example 24: Consider the following examples taken from real-life knowledge bases

and social graphs.

(1) Knowledge bases, where inconsistencies are common [SSW09]:

• Flight A123 has two entries with the same departure time 14:50 and arrival

time 22:35, but one is from Paris to NYC, while the other from Paris to Sin-

gapore [ZRM+13].

• Both Canberra and Melbourne are labeled as the capital of Australia [ECD+04].

• It is marked that all birds can fly, and that penguins are birds [HLH12], despite

their evolved wing structures.

We will see that all these inconsistencies can be easily captured by FDs defined on

entities with a graph structure.

(2) Social graphs. When a blog Z with photo Y is posed, a social network company

defines a status X with attachment Y . It is required that the annotation X .text of X

must match the description Y.desc of Y . That is,

• Blog: if Z has status X , Z has photo Y , and if X has attachment Y , then X .text

= Y.desc.

This is essentially an FD on graph-structured data.

Functional dependencies are also useful in catching spams.
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Figure 5.1: Graphs with dependencies

• Fake account [CSYP12]: If account x′ is confirmed fake, both accounts x and x′

like blogs P1, . . . ,Pk, x posts blog y, x′ posts y′, and if y and y′ have a particular

keyword c, then x is also identified as a fake account.

This rule to identify fake accounts is an FD on graphs. 2

No matter how important, however, the study of FDs for graphs is still in its in-

fancy, from formulation to classical problems to applications. It is more challenging

to define FDs for graphs than for relations, since real-life graphs are semi-structured

and typically do not have a schema. Moreover, for entities represented by vertices in a

graph, FDs have to specify not only regularity between attribute values of the entities,

but also the topological structures of the entities.
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5.1 Preliminaries

We start with a review of basic notations.

Graphs. We consider directed graphs G = (V,E,L,FA) with labeled nodes and edges,

and attributes on its nodes. Here (1) V is a finite set of nodes; (2) E ⊆ V ×V is a set

of edges; (3) each node v in V (resp. edge e in E) carries label L(v) (resp. L(e)), and

(4) for each node v, FA(v) is a tuple (A1 = a1, . . . ,An = an), where ai is a constant,

Ai is an attribute of v written as v.Ai = ai, carrying the content of v such as properties,

keywords, blogs and rating, as found in social networks, knowledge bases and property

graphs.

Example 25: Three graphs are depicted in Fig. 5.1: (a) G1 is a fragment of a knowl-

edge graph, where each flight entity (e.g., flight1) has id (with value val = DL1), de-

parture city (Paris), destination (NYC), and departure and arrival time; each node has

attribute val (not shown) for its value; (b) G2 records fake accounts; each account

has an attribute is fake that is “true” if the account is fake, and “false” otherwise; an

account may post blogs that contain keywords (e.g., blog p5 has attribute keyword

= “free prize”), and may like other blogs; and (c) G3 depicts a country entity and its

capital, carrying attribute val (not shown) for their values. 2

We review two notions of subgraphs.

• A graph G′ = (V ′,E ′,L′,F ′A) is a subgraph of G = (V,E,L,FA), denoted by G′ ⊆
G, if V ′ ⊆V , E ′ ⊆ E, and for each node v ∈V ′, L′(v) = L(v) and F ′A(v) = FA(v);

similarly for each edge e ∈ E ′, L′(e) = L(e).

• We say that G′ is a subgraph induced by a set V ′ of nodes if G′ ⊆ G and E ′

consists of all the edges in G whose endpoints are both in V ′.

Graph patterns. A graph pattern is defined as a directed graph Q[x̄] = (VQ, EQ, LQ, µ),

where (1) VQ (resp. EQ) is a set of pattern nodes (resp. edges), (2) LQ is a function that

assigns a label LQ(u) (resp. LQ(e)) to each pattern node u∈VQ (resp. edge e∈ EQ), (3)

x̄ is a list of variables such that its arity ||x̄|| is equal to the number |VQ| of nodes, and

(4) µ is a bijective mapping from x̄ to VQ, i.e., it assigns a distinct variable to each node

v in VQ. For x ∈ x̄, we use µ(x) and x interchangeably when it is clear in the context.

In particular, we allow wildcard ‘ ’ as a special label.

Example 26: Figure 5.2 depicts six graph patterns Q1–Q6: (1) Q1 specifies two flight
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Figure 5.2: Graph patterns

entities, where µ maps x to a flight, x1–x4 to its id, departure city, destination, departure

time and arrival time, respectively; similarly for y and y1–y5; (2) Q2 depicts a country

entity with two distinct capitals; (3) Q3 shows a generic is a relationship, in which two

nodes are labeled wildcard ‘ ’; (4) Q4 depicts two tuples of relation R represented as

vertices in a graph, labeled with R; (5) Q5 shows a blog entity z including photo y, and

z is described by a status x; and (6) Q6 specifies relationships between accounts x, x′

and blogs y1, . . . ,yk and z1,z2, where x and x′ both like k blogs, x′ posts a blog z1 and x

posts z2. 2

Graph pattern matching. We adopt the conventional semantics of matching via sub-

graph isomorphism. A match of pattern Q in graph G is a subgraph G′= (V ′,E ′,L′,F ′A)

of G that is isomorphic to Q, i.e., there exists a bijective function h from VQ to V ′ such

that (1) for each node u ∈ VQ, LQ(u) = L′(h(u)); and (2) e = (u,u′) is an edge in Q

if and only if e′ = (h(u),h(u′)) is an edge in G′ and LQ(e) = L′(e′). In particular,

LQ(u) = L′(h(u)) always holds if LQ(u) is ‘ ’, i.e., wildcard matches any label to indi-

cate generic entities, e.g., is a in Q3 of Example 26; similarly for edge labels.

We also denote the match as a vector h(x̄), consisting of h(x) (i.e., h(µ(x))) for all

x ∈ x̄, in the same order as x̄. Intuitively, x̄ is a list of entities to be identified by Q, and
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h(x̄) is such an instantiation in G, one node for each entity.

Example 27: A match of Q1 of Example 26 in G1 of Fig. 5.1 is h1: x 7→ flight1,

y 7→ flight2, x3 7→ NYC, y3 7→ Singapore, and similarly for the other variables in Q1.

When k = 2, a match of Q6 in G2 is h2: (x′ 7→ acct3,x 7→ acct4, y1 7→ p3, y2 7→ p4,

z1 7→ p7,z2 7→ p8). 2

The notations of this chapter are summarized in Table 5.1.

symbols notations

G graph (V,E,L,FA)

Q[x̄] graph pattern (VQ, EQ, LQ, µ)

ϕ,Σ GFD ϕ = (Q[x̄],X → Y ), Σ is a set of GFDs

h(x̄) |= X → Y a match h(x̄) of Q satisfies X → Y

ΣQ a set of GFDs of Σ embedded in pattern Q

Vio(Σ,G) all the violations of GFDs Σ in graph G

t(|Σ|, |G|) sequential time for computing Vio(Σ,G)

T (|Σ|, |G|,n) parallel time for Vio(Σ,G), using n processors

W (Σ,G) workload for computing Vio(Σ,G)

PV(ϕ) a pivot vector (z̄, c̄Q) of GFD ϕ

w = 〈v̄z,Gz̄〉 work unit (v̄z: candidate; Gz̄: neighbors of v̄z)

Table 5.1: Notations in Chapter 5
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5.2 GFDs: Syntax and Semantics

We now define functional dependencies for graphs (GFDs).

GFDs. A GFD ϕ is a pair (Q[x̄],X → Y ), where

• Q[x̄] is a graph pattern, called the pattern of ϕ; and

• X and Y are two (possibly empty) sets of literals of x̄.

Here a literal of x̄ has the form of either x.A = c or x.A = y.B, where x,y ∈ x̄, A and

B denote attributes (not specified in Q), and c is a constant. We refer to x.A = c as a

constant literal, and x.A = y.B as a variable literal.

Intuitively, GFD ϕ specifies two constraints:

• a topological constraint imposed by pattern Q, and

• attribute dependency specified by X → Y .

Recall that the “scope” of a relational FD R(X → Y ) is specified by a relation schema

R: the FD is applied only to instances of R. Unlike relational databases, graphs do

not have a schema. Here Q specifies the scope of the GFD, such that the dependency

X → Y is imposed only on the attributes of the vertices in each subgraph identified by

Q. Constant literals x.A = c enforce bindings of semantically related constants, along

the same lines as CFDs [FGJK08].

Example 28: To catch the inconsistencies described in Example 24, we define GFDs

with patterns Q1–Q6 of Fig. 5.2.

(1) Flight: GFD ϕ1 = (Q1[x,x1-x5,y,y1-y5], X1→ Y1), where X1 is x1.val = y1.val, and

Y1 consists of x2.val = y2.val and x3.val = y3.val. Here val is an attribute for the content

of a node. By Q1, x1, x2 and x3 denote the flight id, departing city and destination of a

flight x, respectively; similarly for y1, y2 and y3 of entity y. Hence GFD ϕ1 states that

for all flight entities x and y, if they share the same flight id, then they must have the

same departing city and destination.

(2) Capital: GFD ϕ2 = (Q2[x,y,z], /0→ y.val = z.val). It is to ensure that for all country

entities x, if x has two capital entities y and z, then y and z share the same name.

(3) Generic is a: GFD ϕ3 = (Q3[x,y], /0→ x.A = y.A). It enforces a general property of

is a relationship: if entity y is a x, then for any property A of x (denoted by attribute A),

x.A = y.A. Observe that x and y in Q3 are labeled with wildcard ‘ ’, to match arbitrary

entities. Along the same lines, GFDs can enforce inheritance relationship subclass.
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In particular, if x is labeled with bird, y with penguin, and A is can fly, then ϕ3

catches the inconsistency described in Example 24: penguins cannot fly but are classi-

fied as bird.

(4) FDs and CFDs. Consider an FD R(X → Y ) over a relation schema R [AHV95].

When an instance of R is represented as a graph in which each tuple is denoted by a

node labeled R, we write ϕ4 = (Q4[x,y], X ′→ Y ′). Here Q4 consists of two vertices x

and y denoting two tuples of R, X ′ consists of x.A = y.A for all A ∈ X , and Y ′ includes

x.B = y.B for all B ∈ Y . Note that ϕ4 is defined with variable literals only.

Using constant literals, GFDs can express CFDs [FGJK08]. For instance, R(country=

44,zip → street) is a CFD defined on relation R, stating that in the UK, zip code

uniquely determines street [FGJK08]. It can be written as GFD ϕ′4 = (Q4[x,y], X ′→Y ′),

where X ′ consists of x.country = 44, y.country = 44, and x.zip = y.zip, and Y ′ is

x.street = y.street.

As another example, CFD R(country = 44,area code = 131→ city = Edi) states

that in the UK, if the area code of a city is 131, then the city is Edi [FGJK08]. It can

be expressed as a GFD ϕ′′4 = (Q′′4[x], X ′′→ Y ′′), where Q′′4 consists of a single node x

labeled R, and X ′′ includes x.country = 44 and x.area code = 131, while Y ′′ is x.city =

Edi.

(5) Blogs: ϕ5 = (Q5[x,y,z], /0→ x.text= y.desc). It states that if entities x,y and z satisfy

the topological constraint of Q5 depicted in Fig. 26, then the annotation of status x of

blog z must match the description of photo y included in z.

(6) Fake account: ϕ6 = (Q6[x,x′,y1, . . . ,yk,z1,z2], X6→Y6), where X6 includes x′.is fake=

true, z1.keyword = c, z2.keyword = c, and Y6 is x.is fake = true; here c is a constant

indicating a peculiar keyword. It states that for accounts x and x′, if the conditions in

X6 are satisfied, including that x′ is confirmed fake, then x is also a fake account. 2

Semantics. To interpret GFDs, we use the following notations. Consider a GFD ϕ =

(Q[x̄],X → Y ). Consider a match h(x̄) of Q in a graph G, and a literal x.A = c. We say

that h(x̄) satisfies the literal if there exists attribute A at the node v = h(x) and v.A = c;

similarly for literal x.A = y.B. We denote by h(x̄) |= X if h(x̄) satisfies all the literals

in X ; similarly for h(x̄) |=Y . Here we write h(µ(x)) as h(x), where µ is the mapping in

Q from x̄ to nodes in Q.

A graph G satisfies GFD ϕ, denoted by G |= ϕ, if for all matches h(x̄) of Q in G, if

h(x̄) |= X then h(x̄) |= Y . We write h(x̄) |= X → Y if h(x̄) |= Y whenever h(x̄) |= X .
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Observe the following. (1) For a literal x.A= c in X , node h(x) does not necessarily

have attribute A. If h(x) has no attribute A, h(x̄) trivially satisfies X → Y . This allows

us to accommodate the semi-structured nature of graphs. (2) In contrast, when x.A = c

is in Y and h(x̄) |= Y , then h(x) must have attribute A by the definition of satisfaction

above; similarly for x.A = y.B. (3) When X is /0, h(x̄) |= X for any match h(x̄) of Q in

G; similarly for Y = /0.

Example 29: Consider GFDs ϕ1,ϕ2 and ϕ6 of Example 28 and G1,G2,G3 of Fig. 5.1.

One can verify the following.

(a) G1 6|= ϕ1. Indeed, the match h1 given in Example 6 satisfies X1 since h1(x1).val =

h1(y1).val, but it does not satisfy Y1 since h1(x3).val 6= h1(y3).val. Similarly, G2 6|= ϕ6,

as witnessed by match h2 of Example 6. Note that there are other matches of Q6 in G2

that satisfy X6→ Y6, e.g., when we map x′ 7→ acct1 and x 7→ acct2, However, G2 |= ϕ6

only if all matches of Q6 in G2 satisfy X6→ Y6.

(b) G3 |= ϕ2 since there exists no match of Q2 in G3: the country in G3 has a unique

capital, and trivially satisfies ϕ2.

Observe the following: (a) entities in the same match of Q may be far apart; e.g.,

flight1 and flight2 are disconnected from each other; and (b) X → Y is imposed only

on matches of Q (satisfying its topological constraint), e.g., ϕ2. 2

We say that a graph G satisfies a set Σ of GFDs if for all ϕ ∈ Σ, G |= ϕ, i.e., G

satisfies every GFD in Σ.

Special cases. GFDs subsume the following special cases.

(1) As shown by ϕ4, ϕ′4 and ϕ′′4 in Example 28, relational FDs and CFDs are special

cases of GFDs, when tuples in a relation are represented as nodes in a graph. In fact,

GFDs are able to express equality-generating dependencies (EGDs) [AHV95].

(2) A GFD (Q[x̄],X → Y ) is called a constant GFD if X and Y consist of constant

literals of x̄ only. It is called a variable GFD if X and Y consist of variable literals only.

Intuitively, constant GFDs subsume constant CFDs [FGJK08], and variable GFDs are

analogous to traditional FDs [AHV95].

In Example 28, ϕ1-ϕ5 are variable GFDs, ϕ′′4 and ϕ6 are constant GFDs, while ϕ′4

is neither constant nor variable.

(3) GFDs can specify certain type information. For an entity x of type τ, GFD (Q[x], /0→
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x.A = x.A) enforces that x must have an A attribute, where Q consists of a single vertex

labeled τ and denoted by variable x. However, GFDs cannot enforce that x has a finite

domain, e.g., Boolean.
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5.3 Reasoning about GFDs

We next study the satisfiability and implication problems for GFDs. These are classical

problems associated with any class of data dependencies. Our main conclusion is that

these problems for GFDs are no harder than for CFDs.

5.3.1 The Satisfiability Problem for GFDs

A set Σ of GFDs is satisfiable if Σ has a model; that is, a graph G such that (a) G |= Σ,

and (b) for each GFD (Q[x̄],X → Y ) in Σ, there exists a match of Q in G.

The satisfiability problem for GFDs is to determine, given a set Σ of GFDs, whether

Σ is satisfiable.

Intuitively, it is to check whether the GFDs are “dirty” themselves when used as

data quality rules. A model G of Σ requires all patterns in the GFDs of Σ to find a

match in G, to ensure that the GFDs do not conflict with each other.

Over relational data, a set Σ of CFDs may not be satisfiable [FGJK08]. The same

happens to GFDs on graphs.

Example 30: Consider two GFDs defined with the same pattern Q7 depicted in Fig. 5.3:

ϕ7 = (Q7[x], /0→ x.A = c) and ϕ′7 = (Q7[x], /0→ x.A = d), where c and d are distinct

constants. Then there exists no graph G that includes a τ entity v and satisfies both ϕ7

and ϕ′7. For if such a node v exists, then by ϕ7, v has an attribute A with value c, while

by ϕ′7, v.A must take a different value d, which is impossible.

As another example, consider GFDs ϕ8 = (Q8[x,y,z], /0→ x.A= c) and ϕ9 = (Q9[x,y,

z,w], /0→ x.A = d) for distinct c and d, where Q8 and Q9 are shown in Fig. 5.3. One

can verify that each of ϕ8 and ϕ9 has a model, when taken alone. However, they are

not satisfiable when put together. Indeed, if they have a model G, then there must

exist isomorphic mappings h and h′ from Q8 and Q9 to G, respectively, such that

h(x) = h′(x) = v for some node v in G. Then again, v is required to have attribute

A with distinct values. 2

As shown in Example 30, GFDs defined with different graph patterns may interact

with each other. Indeed, Q8 and Q9 are different, but ϕ8 and ϕ9 can be enforced on

the same node, since Q8 is isomorphic to a subgraph of Q9. This tells us that the

satisfiability analysis has to check subgraph isomorphism among the patterns of the

GFDs, which is NP-complete (cf. [Pap03]). In light of this, we have the following.
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Figure 5.3: Graph patterns in GFDs

Theorem 20: The satisfiability problem is coNP-complete for GFDs. 2

One might think that the problem would become simpler if Σ consists of constant

GFDs only (see Section 5.2), or when all patterns in Σ are acyclic directed graphs

(DAGs). However, the complexity bound is rather robust.

Corollary 21: The satisfiability problem is coNP-complete for constant GFDs that are

defined with DAG patterns. 2

The complexity of GFDs is not inherited from CFDs. Indeed, the satisfiability

analysis of CFDs is NP-hard only under a schema that enforces attributes to have a

finite domain [FGJK08], e.g., Boolean, i.e., when CFDs and finite domains are put

together. In contrast, graphs do not come with a schema; while GFDs subsume CFDs,

they cannot specify finite domains. That is, the satisfiability problem for GFDs is

already coNP-hard in the absence of a schema.

The upper bound proofs are nontrivial. It needs the following notations and a

lemma.

(1) A pattern Q′ = (V ′Q, E ′Q, L′Q, µ′) is embeddable in Q = (VQ, EQ, LQ, µ) if there exists

an isomorphic mapping f from (V ′Q,E
′
Q) to a subgraph of (VQ,EQ), preserving node

and edge labels. If Q′ is embeddable in Q via f , then for any GFD ϕ′=(Q′[x̄′],X ′→Y ′)

defined with Q′, (Q[x̄], f (X ′)→ f (Y ′)) is an embedded GFD of ϕ′ in Q, where f (X ′)

substitutes f (x′) for each x′ in X ′; similarly for f (Y ′). Here again we use variable x

and node µ(x) interchangeably.

(2) For a pattern Q and a set Σ of GFDs, a set ΣQ of GFDs is said to be embedded in Q

and derived from Σ if for each φ ∈ ΣQ, the pattern of φ is Q, and moreover, there exists

ϕ ∈ Σ such that φ is an embedded GFD of ϕ in Q.

(3) For a set ΣQ of GFDs embedded in the same pattern Q, we define a set enforced(ΣQ)

of literals inductively as follows:
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• if (Q[x̄], /0→Y ) is in ΣQ, then Y ⊆ enforced(ΣQ), i.e., all literals of Y are included

in enforced(ΣQ); and

• if (Q[x̄],X→Y ) is in ΣQ and if all literals of X can be derived from enforced(ΣQ)

via the transitivity of equality atoms, then Y ⊆ enforced(ΣQ).

As an example of transitivity, if x.A = c and y.B = c are in enforced(ΣQ), then X .A =

y.B ∈ enforced(ΣQ). Intuitively, enforced(ΣQ) is a set of equality atoms that have to be

enforced on a graph G that satisfies Σ (and hence ΣQ).

One can verify that given ΣQ, enforced(ΣQ) can be computed in polynomial time

(PTIME) along the same lines as how closures for traditional FDs are computed (see,

e.g., [AHV95]).

We say that ΣQ is conflicting if there exist (x.A,a) and (x.A,b) in enforced(ΣQ)

such that a 6= b.

(4) A set Σ of GFDs is conflicting if there exist a pattern Q and a set ΣQ of GFDs that

are embedded in Q and derived from Σ, such that ΣQ is conflicting.

Conflicting GFDs characterizes the satisfiability of GFDs.

Lemma 22: A set Σ of GFDs is satisfiable if and only if Σ is not conflicting. 2

Proof of Theorem 20. Based on the lemma, we develop an algorithm that, given a set Σ

of GFDs, returns “yes” if Σ is not satisfiable, i.e., the complement of GFD satisfiability.

(a) Guess (i) a set Σ′ ⊆ Σ, (ii) a pattern Q such that Q carries labels that appear in Σ and

|Q| is at most the size of the largest pattern in Σ, and (iii) a mapping from the pattern

of each GFD in Σ′ to Q. (b) Check whether the mappings are isomorphic to subgraphs

of Q. (c) If so, derive the set ΣQ of GFDs embedded in Q from Σ′ and the guessed

mappings. (d) Check whether ΣQ is conflicting; if so, return “yes”. The algorithm is

correct by Lemma 22. It is in NP as steps (b), (c) and (d) are in PTIME. Thus GFD

satisfiability is in coNP.

The lower bound is verified by reduction from subgraph isomorphism to the com-

plement of the satisfiability problem. The reduction uses constant GFDs defined with

DAG patterns only, and hence proves Corollary 21 as well. 2

Tractable cases. We next identify special cases when the satisfiability analysis can be

carried out efficiently.

Corollary 23: A set Σ of GFDs is always satisfiable if one of the following conditions

is satisfied:
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• Σ consists of variable GFDs only, or

• Σ includes no GFDs of the form (Q[x̄], /0→ Y ).

It is in PTIME to check whether Σ is satisfiable if Σ consists of GFDs defined with

tree-structured patterns only, i.e., if for each GFD (Q[x̄],X → Y ) in Σ, Q is a tree. 2

5.3.2 The Implication Problem for GFDs

We say that a set Σ of GFDs implies another GFD ϕ, denoted by Σ |= ϕ, if for all graphs

G such that G |= Σ, we have that G |= ϕ, i.e., ϕ is a logical consequence of Σ.

We assume w.l.o.g. the following: (a) Σ is satisfiable, since otherwise it makes no

sense to consider Σ |= ϕ; and (b) X is a satisfiable set of literals, where ϕ = (Q[x̄],

X → Y ), since otherwise ϕ trivially holds. We will see that these do not increase the

complexity of the implication problem.

The implication problem for GFDs is to determine, given a set Σ of GFDs and

another GFD ϕ, whether Σ |= ϕ.

In practice, the implication analysis helps us eliminate redundant data quality rules

defined as GFDs, and hence, optimize our error detection process by minimizing rules.

Example 31: Consider a set Σ of two GFDs (Q8[x,y,z], x.A = y.A→ x.B = y.B) and

(Q9[x,y,z,w], x.B= y.B→ z.C =w.C). Consider GFD ϕ11 = (Q9[x,y,z,w], x.A= y.A→
z.C = w.C), where patterns Q8 and Q9 are given in Fig. 5.3. One can verify that Σ |=
ϕ11. 2

The implication analysis of GFDs is NP-complete. In contrast, the problem is

coNP-complete for CFDs [FGJK08].

Theorem 24: The implication problem for GFDs is NP-complete. 2

As suggested by Example 31, to decide whether Σ |= ϕ, we have to consider the

interaction between their graph patterns even when ϕ and all GFDs in Σ are variable

GFDs, and when none of them has the form (Q[x̄], /0→ Y ). Thus the implication anal-

ysis of GFDs is more intriguing than their satisfiability analysis, in contrast to Corol-

lary 21.

Corollary 25: The implication problem is NP-complete for constant GFDs alone, and

for variable CFDs alone, even when all the GFDs are defined with DAG patterns and

when none of them has the form (Q[x̄], /0→ Y ). 2
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To prove these, consider a set Σ of GFDs and a GFD ϕ = (Q[x̄],X → Y ). We define

the following notations.

(1) We assume that ϕ is in the normal form, i.e., when Y consists of a single literal x.A=

y.B or y.B = c that is not a tautology x.A = x.A. This does not lose generality. Indeed,

if Y consists of multiple literals, then ϕ is equivalent to a set of GFDs (Q[x̄],X → l),

one for each literal l ∈ Y . If Y is /0 or a tautology, then Σ |= ϕ trivially holds.

(2) For a set ΣQ of GFDs embedded in Q, we define a set closure(ΣQ,X) of literals

inductively as follows:

• X ⊆ closure(ΣQ,X), i.e., all literals of X are in it; and

• if (Q[x̄′],X ′→Y ′) is in ΣQ and if all literals of X ′ can be derived from closure(ΣQ,X)

via the transitivity of equality atoms, then Y ′ ⊆ closure(ΣQ,X).

Note that closure(ΣQ,X) differs from enforced(ΣQ) only in the base case: the former

starts with a given set X of literals, while the latter uses X from GFDs with /0→ X .

Along the same lines as closures of relational FDs [AHV95], one can verify that

closure(ΣQ,X) can be computed in PTIME.

(3) Recall that Y is a literal by the normal form defined above. We say that Y is

deducible from Σ and X if there exists a set ΣQ of GFDs that are embedded in Q and

derived from Σ, such that Y ∈ closure(ΣQ,X).

We characterize the implication analysis as follows.

Lemma 26: For ϕ = (Q[x̄],X → Y ) and a set Σ of GFDs, Σ |= ϕ if and only if Y is

deducible from Σ and X. 2

The proof of the lemma is an extension of its relational FD counterpart (see [AHV95]

for relational FDs).

Proof of Theorem 24. For the upper bound, we give an algorithm for deciding Σ |= ϕ

as follows. (a) Guess a set Σ′ ⊆ Σ, and a mapping from the pattern of each GFD in Σ′ to

the pattern Q of ϕ. (b) Check whether the mappings are isomorphic to subgraphs of Q.

(c) If so, derive the set ΣQ of GFDs embedded in Q from Σ′ and the guessed mappings.

(d) Check whether Y ∈ closure(ΣQ,X); if so, return “yes”. The algorithm is in NP

since steps (b), (c) and (d) are in PTIME. Its correctness follows from Lemma 26.

When the assumption about the satisfiability of Σ and X in ϕ is lifted, the algorithm

can be extended with two initial steps: (i) check whether Σ is not satisfiable in NP;
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if so, return “invalid”, and otherwise continue; (ii) check whether X is satisfiable, in

PTIME; if so, continue; otherwise return “yes”. The extended algorithm is still in NP.

That is, the assumption does not increase the complexity bound.

The lower bound is verified by reduction from a variant of subgraph isomorphism,

which is shown NP-complete. The reduction uses constant GFDs only or variable

CFDs only, all defined with DAGs. Thus it also proves Corollary 21. 2

Tractable cases. An efficient special case is as follows.

Corollary 27: The implication problem is in PTIME for GFDs defined with tree-

structured patterns. 2



Chapter 5. Functional Dependencies on Graphs 155

5.4 Inconsistency Detection

As an application of GFDs, we detect inconsistencies in graphs based on the validation

analysis of GFDs. Our main conclusion is that while the validation problem for GFDs

is intractable, it is feasible to efficiently detect errors in real-life graphs by means of

parallel scalable algorithms.

5.4.1 GFD Validation and Error Detection

Given a GFD ϕ = (Q[x̄],X → Y ) and a graph G, we say that a match h(x̄) of Q in

G is a violation of ϕ if Gh 6|= ϕ, where Gh is the subgraph induced by h(x̄). For a

set Σ of GFDs, we denote by Vio(Σ,G) the set of all violations of GFDs in G, i.e.,

h(x̄) ∈ Vio(Σ,G) if and only if there exists a GFD ϕ in Σ such that h(x̄) is a violation

of ϕ in G. That is, Vio(Σ,G) collects all entities of G that are inconsistent when the set

Σ of GFDs is used as data quality rules.

The error detection problem is stated as follows:

• Input: A set Σ of GFDs and a graph G.

• Output: The set Vio(Σ,G) of violations.

Its decision problem, referred to as the validation problem for GFDs, is to decide

whether G |= Σ, i.e., whether Vio(Σ,G) is empty. The problem is nontrivial.

Proposition 28: Validation of GFDs is coNP-complete. 2

Proof: We show that it is NP-hard to check, given G and Σ, whether G 6|= Σ, by reduc-

tion from subgraph isomorphism.

For the upper bound, we give an algorithm that returns “yes” if G 6|= Σ: (a) guess

a GFD (Q[x̄],X → Y ) from Σ and a mapping h from Q to a subgraph of G; (b) check

whether h is isomorphic; (c) if so, check whether h(x̄) |= X but h(x̄) 6|= Y ; if so, return

“yes”. This is in NP. 2

In contrast, validation is in PTIME for FDs and CFDs, and errors can be detected

in relations by two SQL queries that can be automatically generated from FDs and

CFDs [FGJK08]. That is, error detection is more challenging in graphs.

A sequential algorithm. We give an algorithm that, given a set Σ of GFDs and a graph

G, computes Vio(Σ,G) with a single processor. It is denoted as detVio and works as

follows. (1) It starts with Vio(Σ,G) = /0. (2) For each (Q[x̄],X→Y ) in Σ, it enumerates



Chapter 5. Functional Dependencies on Graphs 156

all matches h(x̄) of Q in G, and checks whether h(x̄) 6|= X → Y ; if so, it adds h(x̄) to

Vio(Σ,G).

The cost of detVio is dominated by enumerating matches h(x̄) of Q[x̄] in Σ. It is

exponential and prohibitive for big G.

5.4.2 Parallel Scalability

Is error detection feasible in large-scale graphs? Our answer is affirmative, by using

parallel algorithms to compute Vio(Σ,G). To characterize the effectiveness of paral-

lelization, we adopt the notion of parallel scalability given in Section 3.4.1. Denote by

• W (Σ,G) the workload, i.e., the necessary amount of work needed to compute

Vio(Σ,G) for any algorithm;

• t(|Σ|, |G|) the running time of a “best” sequential algorithm to compute Vio(Σ,G),

i.e., among all such algorithms, it has the least worst-case complexity; and

• T (|Σ|, |G|,n) the time taken by a parallel algorithm to compute Vio(Σ,G) by

using n processors.

An error detection algorithm is parallel scalable if

T (|Σ|, |G|,n) = c∗ t(|Σ|, |G|)
n

+(n|Σ||W (Σ,G)|)l,

such that c∗t(|Σ|,|G|)
n ≥ (n(|Σ||W (Σ,G)|)l when n ≤ |G| as found in practice, where c

and l are constants. It reduces running time when n gets larger. Intuitively, such an

algorithm guarantees that for a (possibly large) graph G, the more processors are used,

the less time it takes to compute Vio(Σ,G). Hence it makes error detection feasible.

Workload model. To characterize the cost of error detection, we first introduce a

model to quantify its workload.

We start with notions. Consider a GFD ϕ = (Q[x̄],X → Y ), where (Q1, . . . ,Qk) are

(maximum) connected components of Q. Consider z̄ = (z1, . . . ,zk), where for i ∈ [1,k],
zi is a variable in x̄ such that µ(zi) is a node in Qi, where µ is the mapping from variables

to nodes in Q (see Section 5.1). We fix a z̄, referred to as the pivot of ϕ, by picking

zi with the minimum radius in Qi, where the radius is the longest shortest distance

between µ(zi) and any node in Qi. We use PV(ϕ) to denote ((z1,c1
Q), . . . ,(zk,ck

Q)),

referred to as the pivot vector of ϕ, where ci
Q is the radius of Qi at µ(zi).
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Observe the following. (a) By the locality of subgraph isomorphism, for any graph

G, match h(x̄) of Q in G, and any node v = h(x) for x ∈ x̄, v is within ci
Q hops of some

h(zi). (b) Vector PV(ϕ) can be computed in O(|Q|2) time, where Q is much smaller

than G in real life. (c) Pattern Q typically has 1 or 2 connected components, and 99%

of the components have radius at most 2 [GFMPdlF11]. Hence in PV(ϕ), the arity ||z̄||
and each radius ci

Q are typically 1 or 2.

Example 32: For GFDs of Example 28, PV(ϕ1), PV(ϕ2), PV(ϕ4) and PV(ϕ6) are

((x,1),(y,1)), ((x,1)), ((x,0),(y,0)) and ((x,3)), respectively (see Fig. 5.2); in partic-

ular, we take account x as a pivot of Q6; similarly for ϕ3 for ϕ5. 2

A work unit w for checking ϕ in a graph G is characterized by an one-to-one map-

ping σ from z̄ to nodes in G, where z̄ is the pivot in PV(ϕ), such that for each zi ∈ z̄,

σ(zi) and µ(zi) share the same label, i.e., σ(zi) is a candidate of µ(zi). More specifi-

cally, w = 〈v̄z,Gz̄〉, where (a) v̄z = σ(z̄); and (b) Gz̄ is the fragment of G that includes, for

each zi ∈ z̄, the ci
Q-neighbor of σ(zi), i.e., the subgraph of G induced by all the nodes

within ci
Q hops of σ(zi). Intuitively, Gz̄ is a data block in G that has to be checked to

validate ϕ.

We refer to v̄z as a pivot candidate for ϕ in G.

The workload W (ϕ,G) for checking ϕ in G, denoted by W (ϕ,G), is the set of

work units 〈v̄z,Gz̄〉 when v̄z ranges over all pivot candidates of ϕ in G. The workload

W (Σ,G) of a set Σ of GFDs in G is
⋃

ϕ∈ΣW (ϕ,G).

Observe the following. (a) To validate GFD ϕ in a graph G, it suffices to enumerate

matches h(x̄) of Q in data block Gz̄ of each work unit of ϕ, by the locality of subgraph

isomorphism. That is, we enumerate in small Gz̄ instead of in big G. (b) The sequential

cost t(|Σ|, |G|) is the sum of |Gz̄||Σ| for all Gz̄’s that appear in W (Σ,G). (c) The size

|W (Σ,G)| is at most |G|k, where k is the maximum arity of z̄ in all PV(ϕ) of ϕ ∈
Σ. As argued earlier, typically k ≤ 2. Hence |W (Σ,G)| is exponentially smaller than

t(|Σ|, |G|). (d) For a match h(x̄), checking whether h(x̄) |= X → Y takes O((|X |+
|Y |)log(|X |+ |Y |)) time, and |X | + |Y | ≤ |ϕ|. Since the size |ϕ| of ϕ is much smaller

than |G|, W (ϕ,G) suffices to assess the amount of work for checking ϕ in G.

Challenges.

Computing Vio(Σ,G) is a bi-criteria optimization problem. (a) Workload balanc-

ing, to evenly partition W (Σ,G) over n processors; it is to avoid “skewed” partitions,

i.e., when a processor gets far more work units than others, and hence, to maximize

parallelism. (b) Minimizing data shipment, to reduce communication cost, which is
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often a bottleneck [ABC+11]. When a graph G is fragmented and distributed across

processors, to process a work unit w = 〈v̄z,Gz̄〉, we need to ship data from one proces-

sor to another to assemble Gz̄. The cost, denoted by CC(w), is measured by cs ∗ |M|,
where cs is a constant and M is the data shipped.

Parallel scalable error detection. We tackle these challenges in the following two

settings, which are practical parallel paradigms as demonstrated by [HRN+15]. We

show that parallel scalability is within reach in these settings.

Replicated G. Graph G is replicated at each processor [HRN+15]. We study error

detection with replicated G (Section 5.5.1), to balance workload W (Σ,G) over n pro-

cessors such that the overall parallel time for computing Vio(Σ,G) is minimized.

Theorem 29: There exists a parallel scalable algorithm that given a set Σ of GFDs and

a graph G replicated at n processors, computes Vio(Σ,G) in O( t(|Σ|,|G|)
n +|W (Σ,G)|(n+

log |W (Σ,G)|)) parallel time. 2

Partitioned G. When G is partitioned across processors, data shipment in inevitable.

We study error detection with partitioned G (Section 5.5.2), with bi-criteria objective

to (a) minimize data shipment and (2) balance the workload.

Theorem 30: There exists a parallel scalable algorithm that given a set Σ of GFDs, a

partitioned graph G and n processors, computes Vio(Σ,G) in O( t(|Σ|,|G|)
n +n|W (Σ,G)|2

log|W (Σ,G)|+ |Σ||W (Σ,G)|) parallel time. 2

We defer the proofs to the next section.
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5.5 Parallel Algorithms

We next develop parallel scalable algorithms for error detection in the settings given

above, as proofs of Theorems 29 and 30 in Sections 5.5.1 and 5.5.2, respectively. Such

algorithms make it feasible to detect errors in large-scale graphs. We should remark

that there exist other criteria for measuring the effectiveness of parallel algorithms (see

Section 5.7).

5.5.1 Parallel Algorithm for Replicated Graphs

We start with an algorithm in the setting when G is replicated at each processor. In this

setting, the major challenge is to balance the workload for each processor. The idea is

to partition workload W (Σ,G) in parallel, and assign (approximately) equal amount of

work units to n processors.

Algorithm. The algorithm is denoted as repVal and shown in Fig. 5.4. Working with

a coordinator Sc and n processors S1, . . . ,Sn, it takes the following steps. (1) It first

estimates workload W (Σ,G), and creates a balanced partition Wi(Σ,G) of W (Σ,G) for

i ∈ [1,n], by invoking a parallel procedure bPar (line 1). It then sends Wi(Σ,G) to

processor Si (line 2). (2) Each processor Si detects its set of local violations, denoted

by Vioi(Σ,G), by a procedure localVio in parallel (line 3), which only visits the data

blocks specified in Wi(Σ,G). (3) When all processors Si return Vioi(Σ,G), Sc computes

Vio(Σ,G) by taking a union of all Vioi(Σ,G) (lines 4-5). It then returns Vio(Σ,G)

(line 6).

We next present procedures bPar and localVio.

Workload balancing. Procedure bPar balances workload in two phases: estimation

and partition, in parallel.

Workload estimation. Procedure bPar first estimates workload W (Σ,G) in parallel,

following the three steps below.

(1) At coordinator Sc, for each GFD ϕ ∈ Σ, bPar constructs a pivot vector PV(ϕ) =

(z̄, c̄Q). It then balances the computation for workload estimation at n processors as

follows.

(a) For each variable z in the pivot z̄, it extracts the frequency distribution of candidates

C(µ(z)), i.e., those nodes in G that have the same label as µ(z). This can be supported

by statistics of G locally stored at Sc.
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Algorithm repVal

Input: A set Σ of GFDs, coordinator Sc, n processors S1, . . . ,Sn,

a graph G replicated at each processor

Output: Violation set Vio(Σ,G).

1. bPar(Σ,G); /*balance workload in parallel*/

/*executed at coordinator Sc*/

2. send Wi(Σ,G) to processor Si;

3. invoke localVio(Σ,Wi(Σ,G)) at each processor Si for i ∈ [1,n];

4. if every processor Si returns answer Vioi(Σ,G) then
5. Vio(Σ,G): =

⋃
i∈[1,n] Vioi(Σ,G));

6. return Vio(Σ,G);

Procedure localVio(Σ,Wi(Σ,G))

/*executed at each processor Si in parallel*/

1. set Vioi(Σ,G) := /0;

2. for each w = 〈vz̄, |Gz̄|〉 ∈Wi(Σ,G) for GFD ϕ ∈ Σ do
3. enumerate matches h(x̄) by accessing Gz̄;

4. for each h(x̄) such that h(x̄) 6|= X → Y do
5. Vioi(Σ,G):= Vioi(Σ,G)∪{h(x̄)};
6. return Vioi(Σ,G);

Figure 5.4: Algorithm repVal

(b) For each PV(ϕ) = ((z1,c1
Q), . . . ,(zk,ck

Q)) and each zi, it evenly partitions candi-

dates C(µ(zi)) into m sets, for a predefined number m. More specifically, it derives

an m-balanced partition Rµ(zi) = {r1, . . . ,rm} of value ranges of a selected attribute of

C(µ(zi)), such that the number of candidates in C(µ(zi)) whose attribute values fall in

each range r j is even. This is done by using e.g., precomputed equi-depth histogram

(e.g., [MZ11]). It then constructs a set M of messages of the form 〈PV(ϕ),rz〉, where

ϕ is a GFD, rz = 〈rz1, . . .rzk〉, and each rzi ∈ Rµ(zi) is a range of C(µ(zi)) for zi. Remov-

ing duplicates, M contains at most mk messages for ϕ, where k ≤ 2 in practice (see
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Section 5.4).

(c) The set M is evenly distributed to n processors; each processor Si receives a subset

Mi of about |M|n messages.

Example 33: Consider GFD ϕ1 of Example 28, where PV(ϕ1) = ((x,1),(y,1)) (i.e.,

k = 2). Consider graph G including 9 flights flight1–flight9. For n = 3 = m, proce-

dure bPar balances the estimation W (ϕ1,G) as follows.

(1) It determines a 3-range partition Rflight for flight entities as e.g., {[flight1,flight3],

[flight4,flight6], [flight7,flight9]}, for both µ(x) and µ(y), based on attribute µ(x).val

and µ(y).val.

(2) It yields a set M of 6 messages 〈PV(ϕ1),(rflight,r′flight)〉 after removing dupli-

cates (since the two connected components in Q1 (Fig. 5.2) of ϕ1 are isomorphic,

(PV(ϕ1),ri,r j) and (PV(ϕ1),r j,ri) are duplicates for ranges ri and r j).

It then evenly distributes M to 3 processors, e.g., S1 receives M1 = {〈PV(ϕ1),

([flight1,flight3], [flight1,flight3])〉, 〈PV(ϕ1), ([flight1,flight3], [flight4,flight6])〉}.
2

(2) Procedure bPar then identifies work units at each processor Si, in parallel. For each

message 〈PV(ϕ),rz〉 in Mi, Si finds (a) all pivot candidates vz̄ of z̄ such that for each

zi ∈ z̄, its candidate vz̄[zi] in vz̄ has attribute value in the range rzi ∈ rz; and (b) the

ci
Q-neighbors Gz̄ for each vz̄.

Each processor Si then sends a message M′i to the coordinator Sc. Here M′i is a set

of 〈vz̄, |Gz̄|〉, each encoding a pivot candidate and the size of the data block for a unit.

Note that |Gz̄| is sent, not Gz̄. Moreover, Si keeps track of Gz̄ to facilitate local error

detection (to be seen shortly).

Example 34: For 〈PV(ϕ1),([flight1,flight3], [flight1,flight3])〉, processor S1 finds 3

candidates {flight1,flight2,flight3} in the range [flight1,flight3], and their 1-hop neigh-

bors. These yield vz̄[x] as (flighti,flight j) (i ∈ [1,3], j ∈ [1,3], and i < j to remove

duplicates) and correspondingly, 3 work units encoded with |Gz̄|, where |Gz̄| is the to-

tal size of the 1-hop neighbors of flighti and flight j in vz̄[x]. For example, a unit w1 is

〈(flight1,flight2),22〉, where Gz̄ for w1 is graph G1 in Fig. 25, which has 22 nodes and

edges in total. 2

(3) Procedure bPar, at the coordinator Sc, collects a set of messages 〈vz̄, |Gz̄|〉 from all
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the processors, denoted by W (Σ,G). It encodes the set of work units to be partitioned.

Workload partition. This gives rise to a load balancing problem. An n-partition W of

W (Σ,G) is a set of n pair-wisely disjoint work unit sets {W1(Σ,G), . . . ,Wn(Σ,G)}, such

that W (Σ,G) =
⋃

i∈[1,n]Wi(Σ,G). It is balanced if the cost t(|Σ|,Wi(Σ,G)), estimated as

the sum of |Gz̄||Σ| for all Gz̄ in Wi(Σ,G)), is approximately equal. The load balancing

problem is to find a balanced n-partition W for a given W (Σ,G).

Refer to the largest cost incurred at a processor as the makespan of the paral-

lel processing. The load balancing problem is “equivalent to” makespan minimiza-

tion [AMZ03], by setting the capacity of each processor as t(|Σ|,|G|)
n , via PTIME reduc-

tions. The problem is intractable, but approximable.

Proposition 31: (1) The load balancing problem is NP-complete. (2) There is a 2-

approximation algorithm to find a balanced workload partition in O(n|W (Σ,G)|+
|W (Σ,G)| log |W (Σ,G)|) parallel time for given Σ, n and W (Σ,G). 2

Given W (Σ,G), procedure bPar computes a balanced n-partition with a greedy

strategy, following an approximation algorithm of [AMZ03] for makespan minimiza-

tion. (1) It first associates a weight |G(z̄)| with each work unit w = 〈vz̄, |Gz̄|〉. It then

sorts all the work units, in descending order of the weights. With each processor it as-

sociates a load, initially 0. (2) It greedily picks a work unit w with the smallest weight

and a processor Si with the minimum load, assigns w to Si and updates the load of

Si by adding the weight of w. (3) The process proceeds until all work units are dis-

tributed. This yields a 2-approximation algorithm, by approximation-factor preserving

reduction to its counterpart of [AMZ03].

Example 35: Suppose that coordinator Sc receives 9 work units {w1, . . . ,w9} in total,

with estimated size {22,22,26,26,30,30,24,28,28}, respectively. The greedy assign-

ment strategy of bPar generates a 3-partition of the work units as {{w1,w3,w9},{w2,w4,

w5},{w6,w7,w8}}, with balanced block sizes as 76, 78, 82, respectively. Then Sc as-

signs the 3 partitions to processors S1, S2, S3, respectively.

2

Local error detection. Upon receiving the assigned Wi(Σ), procedure localVio com-

putes the local violation set Vioi(Σ,G) at each processor Si in parallel. For each work

unit 〈vz̄, |Gz̄|〉 ∈Wi(Σ,G) for GFD ϕ, it (a) enumerates matches h(x̄) of the pattern in ϕ

such that h(x̄) includes vz̄, by only accessing Gz̄, and (b) checks whether h(x̄) |= X→Y

of ϕ. It collects in Vioi(Σ,G) all violations detected, and sends Vioi(Σ,G) to coordina-
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tor Sc at the end of the process.

Example 36: Consider GFD ϕ1 = (Q1[x̄],X1 → Y1) (Example 28) and work unit w1

(Example 34) assigned to processor S1. Procedure localVio inspects G1 (Fig. 5.1) for

w1, and finds a match h1(x̄) of Q1 in G1, where h1 is given in Example 6. As shown

there, h1(x̄) 6|=X1→Y1. Thus localVio adds h1(x̄) to Vio1(Σ,G). Similarly, S1 processes

w3 and w9 assigned to it, and finally returns Vio1(Σ,G) to Sc.

2

Proof of Theorem 29. By the locality of subgraph isomorphism, procedure bPar iden-

tifies all work units, and localVio computes all violations. From these the correctness

of repVal follows. For the complexity, one can verify the following: (a) procedure bPar

estimates W (Σ,G) in O( |W (Σ,G)|
n ) parallel time, by using a balanced partition; the parti-

tioning takes O(n|W (Σ,G)|+ |W (Σ,G)| log |W (Σ,G)|) time [AMZ03]; and (b) proce-

dure localVio takes O( t(|Σ|,|G|)
n ) parallel time, via a balanced workload partition. Thus

repVal has the complexity stated in Theorem 29 and is parallel scalable. 2

5.5.2 Algorithm for Fragmented Graphs

Graph G may have already been fragmented and distributed across n processor, espe-

cially when it is too costly to replicate G at each processor. In this setting, we have a

bi-criteria error detection problem. Given a set Σ of GFDs and a fragmented graph G, it

is to compute Vio(Σ,G) in parallel, such that (1) the communication cost is minimized,

and (2) the workload for n processors is balanced.

Consider a fragmentation (F1, . . . ,Fn) of G(V,E,L,FA) such that (a) each Fi(Vi,Ei,L,FA)

is a subgraph of G, (b)
⋃

Ei = E and
⋃

Vi = V , and (c) Fi resides at processor Si

(i ∈ [1,n]). Assume w.l.o.g. that the sizes of Fi’s are approximately equal. Moreover, Fi

keeps track of (a) in-nodes Fi.I, i.e., nodes in Vi to which there exists an edge from an-

other fragment, and (b) out-nodes Fi.O, i.e., nodes in another fragment to which there

is an edge from a node in Vi. We refer to nodes in Fi.I or Fi.O as border nodes.

Algorithm. We provide an error detection algorithm for fragmented G, denoted as disVal.

It differs from repVal in workload estimation and assignment, and in local error detec-

tion, to minimize communication and computation costs.

Algorithm disVal works with a coordinator Sc and n processors S1, . . . ,Sn. (1) It

first estimates and partitions workload W (Σ,G) via a procedure disPar, such that the

workload Wi(Σ,G) at each Si is balanced, with minimum communication cost. (2)
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Each processor Si uses a procedure dlovalVio to detect local violation Vioi(Σ,G), in

parallel, with data exchange. (3) Finally, Vio(Σ,G) =
⋃

i∈[1,n] Vio(Σi,G).

We next present procedures disPar and dlovalVio.

Bi-criteria assignment. Procedure disPar extends its counterpart bPar by supporting

(a) workload estimation with communication cost, and (b) bi-criteria assignment.

Workload estimation. Procedure disPar estimates W (Σ,G) at each Si in parallel. For

each pivot vector PV(ϕ) = ((z1,c1
Q), . . . ,(zk,ck

Q)) and each zl in z̄, it finds (a) local

candidates C(µ(zl)) of µ(zl) in Fi, (b) the cl
Q-neighbors Gz̄[zl] for each candidate of

C(µ(zl)), and (c) border nodes Bz̄[zl] from Gz̄[zl] to some nodes in Gz̄[zl]. It encodes

partial work unit wϕ as 〈vz̄, |Gz̄|,Bz̄〉, where (i) vz̄ is a pivot candidate of z̄ in Fi; if

C(µ(zl))= /0, vz̄[z j] takes a placeholder ⊥; (ii) |Gz̄| is the list of |Gz̄[zl]|; and (iii) Bz̄ is

the list of border nodes Bz̄[zl], for all zl ∈ z̄, indicating “missing data”. Each Si then

sends a message Mi to coordinator Sc, with all units, along with the sizes of c-neighbors

of border nodes in Fi.I, where c ranges over the radius of patterns Q in Σ.

Upon receiving Mi’s, disPar builds W (ϕ,G), the set of complete work units at Sc.

A work unit 〈vz̄, |Gz̄|,Bz̄〉 is added to W (ϕ,G) if for each zl ∈ z̄, vz̄[zl] is a candidate

vi
z̄[zl] from a unit wi

ϕ of Mi such that vi
z̄[zl] 6= ⊥, |Gz̄| is the sum of |Gi

z̄[zl]| (extracted

from |Gi
z̄|), and Bz̄ is the union of Bi

z̄[zl] (extracted from Bi
z̄), for all i ∈ [1,n] and ϕ ∈ Σ.

That is, disPar assembles vi
z̄[zl] into work units. It also marks |Gi

z̄[zl]| and Bi
z̄[zl] with

its source wi
ϕ.

Workload assignment. The bi-criteria assignment problem is to find an n-partition

of W (Σ,G) into Wi(Σ,G) for i ∈ [1,n], such that (a) Wi(Σ,G) is balanced, and (b) its

communication cost CCi is minimized, where CCi denotes the amount of data that

needs to be shipped to processor Si if Wi(Σ,G) is assigned to Si. It should ensure that

for each pivot candidate vz̄, there exists a unique unit 〈vz̄, |Gz̄|,Bz̄〉 in all of Wi(Σ,G),

i.e., the candidate is checked only once.

Cost CCi is estimated as follows. For each 〈vz̄, |Gz̄|,Bz̄〉 in Wi(Σ,G) and each zl ∈ z̄,

define CCvz̄[zl] to be the sum of (a) |G j
z̄ [zl]| if j 6= i, i.e., G j

z̄ [zl] has to be fetched from

fragment j; (b) |G(cl
Q,b)
| for each border node vb ∈ Bz̄[zl], which also demands data

fetching. These are identified by using the sources wi
ϕ recorded above. Let CCvz̄ be

the sum of CCvz̄[zl] for all zl ∈ z̄. Then CCi is the sum of all CCvz̄ for candidates vz̄ in

Wi(Σ,G). Care is taken so that each data block is counted only once for CCi.

While bi-criteria assignment is more intriguing than load balancing, it is within

reach in practice via approximation.
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Proposition 32: (1) The bi-criteria assignment problem is NP-complete. (2) There

exists a 2-approximation algorithm to find a balanced workload assignment with min-

imized communication cost in O(n|W (Σ,G)|2 log(|W (Σ,G)|)) time. 2

Extending a strategy for makespan minimization [ST93], procedure disPar com-

putes an n-partition of W (Σ) (after unit grouping) into Wi(Σ,G), sent to processor Si

for i ∈ [1,n].

Local error detection. Upon receiving Wi(Σ,G), procedure dlovalVio computes local

violations Vioi(Σ,Fi) at processor Si, by selecting the following evaluation schemes.

Prefetching. For a work unit w = 〈vz̄, |Gz̄|,Bz̄〉, it first fetches Gz̄ and G(c,b) for Fi.O

nodes in Bz̄ from other fragments. It ensures that each node (edge) is retrieved only

once. After the data is in place, it detects errors locally as in localVio to compute

Vioi(Σ,Fi).

Partial detection. We can also ship partial matches instead of data blocks. The idea is

to estimate the size of partial matches via graph simulation [FWWD14] from pattern

Q[x̄] in a GFD ϕ to Fi. If the number of partial matches is not large, Si exchanges such

matches with other processors in a pipelined fashion, and updates Vioi(Σ,Fi) as soon

as a complete match can be formed from partial ones.

For a unit w ∈Wi(Σ,G) for GFD ϕ at Si, procedure dlovalVio selects a strategy that

incurs smaller (estimated) communication cost CC(w). Intuitively, dlovalVio decides

to process each unit either locally or at a remote processor, whichever incurs smaller

data shipment.

Our algorithms also support optimization strategies for skewed graphs and work-

load reduction.

We verify Theorem 30 by showing that disVal is correct and has the desired com-

plexity, similar to Theorem 29.
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5.6 Experimental Study

Using real-life and synthetic graphs, we experimentally evaluated (1) the parallel scal-

ability, (2) workload partition, (3) communication costs, (4) scalability of our algo-

rithms, and (5) the effectiveness of GFDs for error detection.

Experimental setting. We used three real-life graphs: (a) DBpedia, a knowledge

graph [dbp] with 28 million entities of 200 types and 33.4 million edges of 160 types,

(b) YAGO, an extended knowledge base of YAGO [SKW07] with 3.5 million nodes of

13 types and 7.35 million edges of 36 types, (c) Pokec [Pok], a social network with

1.63 million nodes of 269 different types, and 30.6 million edges of 11 types. We

removed meaningless nodes and labels for a compact representation. We then inserted

new edges by repeatedly dereferencing HTTP URIs over a set of sampled entities to

further enlarge DBpedia (resp. YAGO), to 12.3 million (resp. 3.2 million) entities and

32.7 million (resp. 7.1 million) edges.

We also developed a generator to produce synthetic graphs G = (V,E,L,FA) fol-

lowing the power-law degree distribution. It is controlled by the numbers of nodes |V |
(up to 50 million) and edges |E| (up to 100 million), with L drawn from an alphabet L
of 30 labels, and FA assigning 5 attributes with values from an active domain of 1000

values.

GFDs generator. We generated sets Σ of GFDs (Q[x̄],X → Y ), controlled by (a) ||Σ||,
the number of GFDs, and (b) |Q|, the average size of graph patterns Q in Σ, with

1 or 2 connected components. For each real-life graph, (1) we first mined frequent

features, including edges and paths of length up to 3. We selected top-5 most frequent

features as “seeds”, and combined them to form patterns Q of size |Q|. (2) For each

Q, we constructed dependency X → Y with literals composed of the node attributes.

We generated 100 GFDs on each real-life graph in this way. For synthetic graphs, we

generated 50 GFDs with labels drawn from L .

Algorithms. We implemented the following, all on GRAPE: (1) sequential algorithm detVio

(Section 5.4), (2) parallel algorithm repVal (Fig. 5.4), versus its two variants (a) repran,

which randomly assigns work units to processors, and (b) repnop, which does not

support optimization strategies (multi-query processing [LKDL12] and workload re-

duction), and (3) parallel algorithm disVal (Section 5.5.2), versus its two variants

disran and disnop similar to their counterparts in (2).

We deployed the algorithms on GRAPE, and used up to 20 instances. Each experi-
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Figure 5.5: Parallel scalability and communication

ment was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Parallel scalability. We first evaluated parallel algorithms repVal and disVal,

versus their variants. Fixing |Q|=5 and ||Σ||=50, we varied the number n of processors

from 4 to 20. We replicated and fragmented G for repVal and disVal, respectively. Fig-

ures 5.5(a), 5.5(b) and 5.5(c) report their performance on real-life DBpedia, YAGO and

Pokec, respectively. We find the following. (1) Both repVal and disVal substantially
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reduce parallel time when n increases: they are on average 3.7 and 2.4 times faster

for n from 4 to 20, respectively. These validate Theorems 29 and 30. (2) Both repVal

and disVal outperform their variants: repVal (resp. disVal) is on average 1.9 and 1.4

times (resp. 1.5 and 1.3 times) faster than repnop and repran (resp. disnop and disran),

respectively. These verify the effectiveness of our optimization and load balancing

techniques. (3) Algorithm repVal is faster than disVal, since it requires no data ex-

change by trading with replicated G. (4) Both repVal and disVal work well on large

real-life graphs. For example, repVal (resp. disVal) takes 156 (resp. 326) seconds on

YAGO with 20 processors. In contrast, sequential algorithm detVio does not terminate

on any of the three graphs within 6000 seconds. On average parallel graph replication

(not shown) takes 21.3, 89 and 75 seconds for YAGO, DBpedia and Pokec, respectively.

The replication is performed once and is reused for all queries.

Exp-2: Workload complexity. We next evaluated the impact of the complexity of

GFDs on workload estimation and partition, by varying ||Σ||, the number of GFDs, and

|Q|, the average pattern size. We fixed n = 16.

Varying ||Σ||. Fixing |Q| = 5, we varied ||Σ|| from 50 to 100. As shown in Fig-

ures 5.6(a), 5.6(c) and 5.6(e) on DBpedia, YAGO and Pokec, respectively, (a) all the

algorithms take longer time over larger Σ, as expected, and

(b) repVal (resp. disVal) behaves better than repran and repnop (resp. disran and

disnop), by balancing workload and minimizing communication. However, detVio does

not terminate within 120 minutes on any of the three graphs when ||Σ|| ≥ 80.

Varying |Q|. Fixing ||Σ|| = 50, we varied |Q| from 2 to 6. As shown in Figures 5.6(b),

5.6(d) and 5.6(f), all the algorithms take longer over larger |Q|, due to larger work units.

However, repVal (resp. disVal) outperforms repnop and repran (resp. disnop and disran)

in all the cases, for the same reasons given above. Again, detVio does not terminate in

120 minutes when |Q| ≥ 6 on all the three graphs.

Exp-3: Communication cost. In the same setting as Exp-1, we evaluated the to-

tal communication cost (measured as parallel data shipment time) of disVal, disran

and disnop over the three datasets, reported in Figures 5.5(d), 5.5(e) and 5.5(f), respec-

tively. We omit repVal since it does not require data exchange. We find the following:

(a) the total amount of data shipped (not shown) is far smaller than the size of the un-

derlying graphs; this confirms our estimate of communication costs (Sections 5.4 and

3.3.2); (b) the communication cost takes from 12% to 24% of the overall error detec-

tion cost when n changes from 4 to 20; this is one of the reasons why adding processors
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Figure 5.6: Workload complexity

does not always reduce parallel running time [FWWD14], since using more processors

introduce more data exchange among different processors; and (c) although more data

is shipped with larger n, the communication time is not very sensitive to n due to par-

allel shipment.

Exp-4: Synthetic G. We also evaluated the performance of algorithm disVal over large

synthetic graphs of 50M nodes and 100M edges. We only tested the setting when G is

partitioned, due to limited storage capacity for replicated G.
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Figure 5.7: Scalability: Varying |G| (synthetic)

Fixing n = 16, we varied |G| from (10M, 20M) to (50M, 100M). As shown in

Fig. 5.7, (1) all the algorithms take longer time over larger |G|, as expected; (2) error

detection is feasible in large graphs: disVal takes 21 minutes when |G| = (50M, 100M);

(3) disVal is on average 1.9 and 1.5 times faster than disran and disnop, respectively; this

is consistent with the results on real-life graphs; and (4) sequential algorithm detVio

does not run to completion when |G| ≥ (30M, 60M) within 120 minutes with one

processor.

Exp-5: Effectiveness. To demonstrate the effectiveness of GFDs in error detection,

we show in Fig. 5.8 three real-life GFDs and error caught by them.

GFD 1 is (Q10[x̄], /0→ x.val = c ∧ y.val = d) for distinct c and d, (i.e., x.val = c ∧
y.val = d is false, stating that a person x cannot have y as both a child and a parent. It

catches inconsistency in YAGO2 shown in Fig. 5.8.

GFD 2 is (Q11[x̄], /0→ y.val = y′.val), stating that an entity cannot have two disjoint

types (with no common entities). It identifies an inconsistency at the “schema” level

of DBpedia that contradicts a disjoint relationship.

GFD 3 is (Q12[x̄], /0→ z.val = z′.val). It ensures that if a person is the mayor of a city

in a country z, and is affiliated to a party of a country z′, then z and z′ must be the same

country. It detects an error in YAGO that associates different countries with New York

city (NYC) and Democratic Party, witnessed by the mayor of NYC.

We also evaluated the effectiveness of GFDs for error detection with YAGO, by

comparing with (a) the extension of CFDs to RDF [HZZ14], referred to as GCFDs, and

(b) BigDansing [KIJ+15]. Since the complete set of “true” errors in YAGO is unknown,

we sampled a set of entities. For each sampled entity x, we randomly injected noise

(with probability 2%, 2690 errors in total) into YAGO as suggested by [ZKS+13]: (a)

attribute inconsistency, by changing the value of an attribute x.A; (b) type inconsis-
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Figure 5.8: Real-life GFDs

tency, by revising the type of x; and (c) representational inconsistency, by revising the

value of either x.A or x′.A if x.A=x′.A and x and x′ are of the same type. Denote the set

of entities with noise as Vio, we define the precision (resp. recall) of an error detection

method A as |Vio∩Vio(A)|
|Vio(A)| ) (resp. |Vio∩Vio(A)|

|Vio| , where Vio(A) denotes the inconsistent

entity set detected by A .

We constructed (1) a set Σ of 10 GFDs on YAGO with frequent patterns that match

a fraction of sampled entities and with constants from the original values before noise

injection; and (2) a set of 7 GCFDs over sampled entities following [HZZ14], including

all GFDs in Σ with conjunctive paths (GCFDs do not allow general graph patterns). (3)

We hard-coded the GFDs as user-defined functions for each GFD in Σ, as BigDansing

does not support subgraph isomorphism.

We report the running time and accuracy of these methods in Fig. 5.2, with n = 16

on YAGO extended with noise. We find that (a) GFDs has higher accuracy (91%)

than GCFDs, since it catches inconsistencies with general patterns not expressible by

GCFDs; (b) it takes comparable time for GFDs and GCFDs; and (c) BigDansing is 4.6

times slower, because it had to cast subgraph isomorphic testing as relational joins. It

reports the same accuracy as our algorithm since it hard-coded the same set Σ of GFDs.

Real-world GFDs. Observe the following about the GFDs depicted in Fig. 5.8.

GFD 1 is not expressible as (a) a GCFD since Q10 is a cyclic pattern, or (b) a CFD or

denial constraint (DC) of BigDansing, since otherwise it gets false negative if subgraph

isomorphism is not enforced.

GFD 2 is not expressible as GCFD, CFD or DC for the same reason as GFD 1.

GFD 3 is is not expressible as GCFD although Q12 is a tree, since GCFD cannot do the

test z.id = z′.id; similarly for CFD and DC of BigDansing.
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model recall prec. time

GFD 0.91 1.0 131s

GCFD 0.57 1.0 106s

BigDansing 0.91 1.0 609s

Table 5.2: Running time and accuracy

Summary. From the experimental results we find the following. (1) Error detection

with GFDs is feasible in real-life graphs, e.g., repVal (resp. disVal) takes 156 (resp. 326)

seconds on YAGO with 20 processors. (2) Better still, they are parallel scalable, with

response time improved by 3.7 and 2.4 times, respectively, when the number of proces-

sors increase from 4 to 20. (3) Our optimization techniques improve the performance

of repnop and disnop by 1.9 and 1.5 times, respectively; and workload balancing im-

proves repran and disran by 1.4 and 1.3 times, respectively. (4) GFDs are capable of

catching inconsistencies in real-world graphs.
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5.7 Related Work

We categorize related work to this chapter as follows.

FDs on graphs. Extensions of FDs and CFDs have been studied for RDF [CCP12,

ACCP10, YH11, CFP+14, HZZ14, HGPW15]. The definitions of FDs in [CCP12,

ACCP10, HGPW15] are based on RDF triple embedding and the coincidence of vari-

able valuations. FDs are extended [YH11] to specify value dependencies on clustered

values via, e.g., path patterns; similarly for extensions of CFDs [HZZ14]. A schema

matching framework is proposed in [CFP+14], for transformations between RDF and

relations. It defines FDs as trees in which each node denotes an attribute in a corre-

sponding relation.

Our work differs from the prior work in the following. (1) We define GFDs with

graph patterns to express topological constraints of (property) graphs, beyond RDF.

(2) GFDs capture inconsistencies in graph-structured entities identified by patterns.

In contrast, the FDs of [CCP12, ACCP10, HGPW15] are value-based regardless of

what entities carry the values, and the reasoning techniques of [HGPW15] are based

on relational encoding of RDF data. Moreover, these FDs cannot express equality

with constants (semantic value binding) as in CFDs, e.g., x.city = “Edi”, while GFDs

subsume CFDs.

The FDs of [CFP+14] are defined as trees and assume a relational schema. They

do not support general topological constraints; similarly for [YH11, HZZ14]. (3) We

provide complexity bounds for GFD analyses and parallel scalable algorithms for error

detection in graphs, which were not studied by the prior work.

Closer to this work is [FFTD15] on keys for graphs [FFTD15], which differ from

GFDs in the following. (1) Keys are defined simply as a graph pattern Q[x], with a

designated variable x denoting an entity. In contrast, GFDs have the form (Q[x̄],X →
Y ), where x̄ is a list of variables, and X and Y are conjunctions of equality atoms

with constants and variables in x̄. GFDs cannot be expressed as keys, just like that

relational FDs are not expressible as keys. Moreover, keys of [FFTD15] are recursively

defined to identify entities, while GFDs are an extension of conventional FDs and are

not recursively defined. (2) Keys are defined on RDF triples (s, p,o), while GFDs are

defined on property graphs, e.g., social networks. (3) Keys are interpreted in terms

of three isomorphic mappings: two from subgraphs to Q, and one between the two

subgraphs. In contrast, GFDs needs a single isomorphic mapping from a subgraph

to Q. In light of the different semantics, algorithms for GFDs and keys are radically
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different. (4) We study the satisfiability and implication for GFDs; these classical

problems were not studied for keys [FFTD15].

Inconsistency detection has been studied for relations (see [FG12] for a survey), and

recently for knowledge bases (linked data) [HZZ14, PS04, Men04, SDNR07, SSW09,

PD07]. The methods for knowledge bases employ either rules [HZZ14, Men04, PS04,

SDNR07, SSW09], or probabilistic inferences [PD07]. (1) Datalog rules are used [SDNR07]

to extract entities and detect inconsistent “facts”. SOFIE [SSW09] maintains the con-

sistency of extracted facts by using rules expressed as first-order logic (FO) formulas

along with textual patterns, existing ontology and semantic constraints. Pellet [PS04]

checks inconsistencies by using inference rules in description logic (e.g., OWL-DL).

Dependency rules are used to detect inconsistencies in attribute values in semantic

Web [Men04] and RDF [HZZ14]. BigDansing [KIJ+15] supports user-defined rules

for repairing relational data. To clean graph-structured entities, it needs to represent

graphs as tables and encode isomorphic functions beyond relational query languages.

(2) The inference method of [PD07] uses Markov logic to combine FO and probabilis-

tic graphical models, and detects errors by learning and computing joint probability

over structures.

Our work differs from the prior work as follows. (1) GFDs are among the first

data-quality rules on (property) graphs, not limited to RDF, by supporting topological

constraints with graph patterns. (2) GFDs aim to strike a balance between complexity

and expressivity. Reasoning about GFDs is much cheaper than analyzing FO formulas.

(3) We provide the complexity and characterizations for satisfiability and implication

of GFDs; these are among the first results for reasoning about graph dependencies in

general, and about data quality rules for graphs in particular. (4) We develop parallel

scalable algorithms for error detection and new strategies for workload assignment,

instead of expensive large-scale inference and logic programming. These make error

detection feasible in large graphs with provable performance guarantees, which are not

offered by the prior work.

Parallel algorithms related to GFD validation algorithms are (1) algorithms for de-

tecting errors in distributed data [FGMM10, FLTY14], and (2) algorithms for sub-

graph enumeration, subgraph isomorphism and SPARQL [GHS14, HRN+15, AFU13,

SCC+14, LQLC15, SWW+12, HAR11, RvRH+14, LKDL12].

(1) Algorithms of [FGMM10, FLTY14] (incrementally) detect errors in (horizontally

or vertically) partitioned relations based on CFDs. The methods work on relations,
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but do not help GFDs that require subgraph isomorphism computation. Indeed, our

algorithms are radically different from those of [FGMM10, FLTY14].

(2) Closer to this work are parallel algorithms for subgraph enumeration [Pla13, AFU13,

SCC+14, LQLC15]. (a) MapReduce algorithms are proposed via conjunctive multi-

way join operations [AFU13] and decomposed edge joins [Pla13]. The strategy is

effective for triangle counting [SV11]. (b) To reduce excessive partial answers for gen-

eral patterns, a MapReduce solution in [LQLC15] decomposes a pattern into twin twigs

(single edge or two incident edges), and adopts a left-deep-join strategy to join multiple

edges as stars. To cope with skewed nodes, the neighborhoods of high-degree nodes

are partitioned, replicated and distributed. Decomposition strategies are used to reduce

MapReduce rounds and I/O cost. (c) A BSP framework is developed in [SCC+14] via

vertex-centric programming. It adopts an online greedy strategy to assign partial sub-

graphs to workers that incur minimum overall workload, and optimization strategies to

reduce subgraph instances.

(3) A number of parallel algorithms are developed for subgraph isomorphism [SWW+12,

RvRH+14] and SPARQL queries [GHS14, LKDL12, HRN+15, HAR11]. Twig de-

composition is used to prune the intermediate results and reduce the latency in Trinity

memory cloud [SWW+12]. The in-memory algorithm of [RvRH+14] parallelizes a

backtracking procedure by (a) evenly distributing partial answers among threads for

local expansion, and (b) copying the partial answers to a global storage for balanced

distribution in the next round. Hash-based partitioning, query decomposition and load

balancing strategies are introduced for parallel SPARQL on RDF [GHS14, HAR11].

Query decomposition and plan generation techniques are studied in [HRN+15], which

avoid communication cost by replicating graphs. Optimization techniques for multi-

pattern matching are provided in [LKDL12], by extracting common sub-patterns. Many

of these techniques leverage RDF schema and SPARQL query semantics, which are not

available for GFDs and general property graphs.

This work differs from the prior work in the following. (a) GFD validation in dis-

tributed graphs is a bi-criteria optimization problem, to balance workload and min-

imize communication cost, with combined complexity from subgraph enumeration

of disconnected patterns and dependency checking in fragmented graphs. It is more

challenging than graph queries studied in the prior work. (b) We introduce a work-

load assignment strategy for the intractable optimization problem, with approximation

bounds, instead of treating workload balancing and communication cost minimization
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separately [LQLC15, SCC+14]. (c) We warrant parallel scalability, which is not guar-

anteed by the prior algorithms.

On the other hand, this work can benefit from prior techniques for fast parallel sub-

graph matching and listing, e.g., query decomposition strategies [LQLC15, SWW+12,

HRN+15] and multi-thread in-memory algorithm [RvRH+14], for local error detec-

tion at each worker. We have adopted the optimization techniques of [LKDL12], and

will incorporate others into GFD tools.

(4) There has also been work on characterizing the effectiveness of parallel algorithms,

in terms of communication costs of MapReduce algorithms [AU10], constraints on

MapReduce computation/communication cost (MRC [KSV10], MMC [TLX13] and

SGC [QYC+14]), and the polynomial fringe property of recursive programs [ABC+11].

We adopt the notion of parallel scalability [KRS88], which measures speedup by par-

allelization over multiple processors, in terms of both computation and communication

costs. It is for generic parallel algorithms not limited to MapReduce. A parallel scal-

able algorithm guarantees to scale with large graphs by adding processors. However,

parallel scalability is beyond reach for certain graph computations [FWWD14]. We

show that GFD validation is parallel scalable, by providing such algorithms.

Static analyses. Over relations, the satisfiability and implication problems are known

to be in O(1) and linear time for FDs, NP-complete and coNP-complete for CFDs,

O(1) time and PSPACE-complete for inclusion dependencies (INDs), respectively. The

validation problem is in PTIME for FDs, CFDs and INDs (cf. [AHV95, FG12]). We

show that for GFDs on graphs, validation, satisfiability and implication for GFDs are

coNP-complete, coNP-complete and NP-complete, respectively. As will be seen in

Section 5.3, the complexity of GFDs comes from the interactions between graph pat-

terns (subgraph isomorphism); it is not inherited from CFDs.
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5.8 Summary

The chapter is supplimental to the data quantily on GRAPE and a first step towards a de-

pendency theory for graphs. We have proposed GFDs, established complexity bounds

for their classical problems, and provided parallel scalable algorithms for their appli-

cation. Our experimental results have verified the effectiveness of GFD techniques.



Chapter 6

Conclusion and Future Work

In this chapter we summarise the results of this thesis and propose future work.

6.1 Conclusion

In this thesis, We have studied a new parallel graph computation engine, GRAPE, from

its foundations to applications.

Framework and Foundation of GRAPE. We proposed an approach to parallelizing

sequential graph algorithms. For a class of graph queries, users can plug in existing

sequential algorithms with minor changes. GRAPE parallelization guarantees to ter-

minate with correct answers under a monotonic condition if the sequential algorithms

are correct. Moreover, we proved that graph algorithms for existing parallel graph sys-

tems can be migrated to GRAPE, without incurring extra cost. We have verified that

GRAPE achieves comparable performance to the state-of-the-art graph systems for

various query classes, and that (bounded) IncEval reduces the cost of iterative graph

computations.

Association Rules Discovery on GRAPE. As an application on GRAPE, we studied

association rules with graph patterns, from its syntax, semantics to support and confi-

dence metrics. We have studied DMP and EIP, for mining GPARs and for identifying

potential customers with GPARs, respectively, from complexity to parallel (scalable)

algorithms. Our experimental study has verified that while DMP and EIP are hard, it is

feasible to discover and make practical use of GPARs. We contend that GPARs provide

a promising tool for social media marketing, among other applications.

Extending Pattern Matching on GRAPE with Quantifiers. To make GPARs sat-

178
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isfy the need in social marketing, we have proposed quantified matching, by extend-

ing traditional graph patterns with counting quantifiers. We have studied important

issues in connection with quantified matching, from complexity to algorithms to ap-

plications. The novelty of this work consists in quantified patterns (QGPs), quantified

graph association rules (QGARs), and algorithms with provable guarantees (e.g., opti-

mal incremental matching and parallel scalable matching). Our experimental study has

verified the effectiveness of QGPs and the feasibility of quantified matching in real-life

graphs. Quantified graph pattern matching also opens new areas for the applications on

GRAPE. With its expressive power, GRAPE is able to resolve more complex problems

such as accurately entity identification, customer recommendations.

Functional Dependencies on Graphs. As response to the data quality issue on

GRAPE, we studied functional dependencies on graphs. It is a first step towards a de-

pendency theory for graphs. We have proposed GFDs, established complexity bounds

for their classical problems, and provided parallel scalable algorithms for their appli-

cation. Our experimental results have verified the effectiveness of GFD techniques.

6.2 Future Work

There are many problems related to the thesis remain open.

Asynchronised Parallel Model. GRAPE adopts BSP model and imposes many global

synchronisation barriers. While simplifies the convergence analysis of GRAPE, it in-

evitably suffered from stale messages and worker stragglers in some cases. Some

workers take much longer time than the average. Hence the system has to wait for

the slowest worker. This situation gets worse when failure happens to some workers.

Extending GRAPE to support asynchronous parallel processing is possibly utilise the

resources in the whole system. Problems include correctness conditions, consistency

and a model of cost evaluation need to be addressed.

Graph Mutation Support. It should first be remarked that state-of-the-art graph anal-

ysis platforms such as GraphLab, Giraph and Blogel all take as input static graphs, and

do not mutate during the computation. This dissertation adopts this setting. However,

the social network data is not static and changes constantly. Nonetheless, the use of

incremental computation makes it easier than the competitors of GRAPE to support

streaming updates during the computation. A simple strategy is to support a sliding
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window to accumulate updates and then apply IncEval to incorporate the updates, when

the updates are not substantial as commonly found in practice. We are developing a

more sophisticated strategy to cope with heavy updates, by supporting concurrency

control.

Discovering GPARs with quantifiers. We studied the GPARs discovering problem

and expressive power of the GPARs with quantifiers. However, mine the GPARs with

counting quantifiers are not easy. As remarked earlier, quantified pattern matching

problem is DP-complete for patterns with possibly negative edges. This makes the

mining problem hard. Besides, there still unknown whether exists a parallel scalable

algorithm to discover the GPARs with quantifiers.

Parallel scalability. As remarked in previous chapters, not all parallel algorithms

are guaranteed to have a linear speed up when more processors used. Worse still,

there are graph query classes for which there exist no parallel algorithm with this

property. A natural question is then how to characterise the effectiveness of paral-

lel algorithms? Several models have been proposed for this purpose, e.g., [FGN13],

[KSV10], [QYC+14], [TLX13]. However, the study of this issue is still in its infancy.

A characterization remains to be developed for general shared-nothing systems.

Discovering GFDs. To use GFDs to detect inconsistencies in real-life graphs, we as-

sumed GFDs are in place. In fact, it is non-trivial to discover GFDs in real knowledge

bases. Worse still, GFD discovery is much harder than its counterparts algorithms for

relational FDs [HKPT99] and CFDs [FGLX11], since GFDs are a combination of topo-

logical constraints and attribute dependencies its validation analysis is NP-complete.

It is also more challenging than graph pattern mining since it has to deal with discon-

nected patterns and trivial or negative GFDs. Not to mention their intractable satisfia-

bility and implication analyses.

Repairing inconsistency for graph-structured data. As the next step of error de-

tection in knowledge graphs, efficient methods are needed to repair the dirty data. Re-

pairing big data is much harder than detecting errors and introduce many challenges. It

is NP-hard for repairing problem even only with relational FDs [BFFR05]. The graph

data lack of schemes, which makes it worse. It is more challenging when applied to the

critical data such as knowledge base, which requires the fix should be 100% correct.
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