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This article presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior

systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for

recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a

principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental

function as the intermediate consequence operator. We show that users can devise existing sequential graph

algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition,

the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are

correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on

GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable

performance to the state-of-the-art graph systems using real-life and synthetic graphs.
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1 INTRODUCTION

Several parallel systems have been developed for graph computations, such as Pregel [50],
GraphLab [49], Giraph++ [63], and Blogel [71]. These systems, however, require users to recast

Qiang Yin is currently affiliated with Beihang University and Alibaba Group.

Authors’ addresses: W. Fan (Corresponding author), University of Edinburgh, 10 Crichton Street, Edinburgh, UK, EH8

9AB, Beihang University, 37 Xue Yuan Road, Haidian District, Beijing, China, 100191; email: wenfei@inf.ed.ac.uk; W. Yu,

J. Xu, J. Zhou, X. Luo, and Q. Yin, Alibaba Group, 969 West Wen Yi Road, Yu Hang District. Hangzhou, China, 311121;

email: {wenyuan.yu, jingbo.xu, xiaojian.luo, qiang.yin}@7bridges.io, jingren.zhou@alibaba-inc.com; P. Lu, BDBC, Beihang

University, 37 Xue Yuan Road, Haidian District, Beijing, China, 100191; email: luping@buaa.edu.cn; Y. Cao and R. Xu,

University of Edinburgh, 10 Crichton Street, Edinburgh, UK, EH8 9AB; email: {yang.cao, ruiqi.xu}@ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0362-5915/2018/12-ART18 $15.00

https://doi.org/10.1145/3282488

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 18. Publication date: December 2018.

https://doi.org/10.1145/3282488
https://doi.org/10.1145/3282488


18:2 W. Fan et al.

Table 1. Graph Traversal on Parallel Systems

System Category Time(second) Communication(MB)
Giraph vertex-centric 434.0 113411.1

GraphLab vertex-centric 41.7 106756.3
Blogel block-centric 112.3 123377.0
GRAPE semi-auto parallelization 24.3 14744.8

graph algorithms into their models. While graph computations have been studied for decades and
a number of sequential (single-machine) graph algorithms are already in place, to use Pregel, for
instance, one has to “think like a vertex” and recast the existing algorithms into a vertex-centric
model, and similarly when programming with other systems. The recasting is nontrivial for peo-
ple who are not very familiar with the parallel models. This makes these systems a privilege for
experienced users only.

Is it possible to have a system such that we can provide sequential (single-machine) graph al-
gorithms as a whole (subject to minor changes) and parallelize the computation across multiple
processors without drastic degradation in either performance or functionality of the existing sys-
tems?

GRAPE. To answer this question, we develop GRAPE, a parallel GRAPh Engine for graph com-
putations such as graph traversal, graph pattern matching, graph connectivity, and collaborative
filtering. Using familiar terms, we refer to a graph computation problem Q as a class of queries
and an instance Q of Q as a query of Q. GRAPE differs from prior graph systems in the following.

(1) Ease of programming. GRAPE supports a simple programming model. For a class Q of graph
queries, users only need to provide (existing) sequential (incremental) algorithms forQ with minor
additions. There is no need to revise the logic of the existing algorithms, and it substantially reduces
the effort to “think parallel.” This makes parallel graph computations accessible to a large group
of users who know the conventional graph algorithms covered in undergraduate textbooks.

(2) Termination and correctness. GRAPE parallelizes the sequential algorithms based on a combi-
nation of partial evaluation and incremental computation. It guarantees to converge at correct
answers under a monotonic condition as long as the sequential algorithms provided are correct.

(3) Graph-level optimization. GRAPE naturally inherits all optimization strategies available for se-
quential algorithms and graphs, such as indexing, compression, and partitioning. In contrast, these
strategies are hard to implement for vertex-centric programs.

(4) Scalability. The ease of programming does not imply performance degradation compared with
the state-of-the-art systems such as vertex-centric Giraph [6] (Pregel) and GraphLab, and block-
centric Blogel. For instance, Table 1 shows the performance of the systems for Single-Source
Shortest-Path (SSSP) queries over Friendster [4], a social network with 65 million users and 1.8
billion relationships (edges) using 192 processors; GRAPE outperforms Giraph, GraphLab, and
Blogel in both response time and communication costs (see Section 7 for more results).

A principled approach. To see how GRAPE achieves these results, we present its underlying
principles. Consider a graph G that is partitioned into fragments (F1, . . . , Fn ), and distributed
across n processors (P1, . . . , Pn ), where Fi resides at Pi for i ∈ [1,n], respectively. Given a query
Q ∈ Q and a fragmented graph G, GRAPE computes the answer Q (G ) to Q in G based on the
following.

Partial evaluation. Given a function f (s,d ) and the s part of its input, partial evaluation is to special-
ize f (s,d ) with respect to the known input s [42]. That is, it performs the part of f ’s computation
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Fig. 1. Programming Interface of GRAPE.

that depends only on s and generates a partial answer (i.e., a residual function f ′ that depends on
the as yet unavailable input d . For each processor Pi in GRAPE, its local fragment Fi is its known
input s , while the data residing at other processors account for the yet unavailable input d . GRAPE

computes Q (Fi ) at all processors Pi ’s in parallel as partial evaluation.

Incremental computation. Graph computations are often iterative. If Q (G ) cannot be obtained in
one step by combining partial resultsQ (Fi ), GRAPE exchanges selected partial results as messages
between processors and computes Q (Fi ⊕ Mi ) by treating message Mi to Pi as updates to certain
status variables associated with nodes and edges in Fi . It incrementally computes changes ΔOi

to Q (Fi ) such that Q (Fi ⊕ Mi ) = Q (Fi ) ⊕ ΔOi , making maximum reuse of previous results Q (Fi ).
Here (i) Mi is a message designated to worker Pi , where fragment Fi resides; (ii) Fi ⊕ Mi is the
abbreviation of the following steps: (a) deduce the change ΔFi to Fi from Mi (we will show how to
deduce the change in Section 3.2) and then (b) apply the change ΔFi to fragment Fi ; and (iii)Q (Fi )
⊕ ΔOi is to apply the change ΔOi to the old resultQ (Fi ). It is to minimize the use of notations that
we reload the notation ⊕; it will be clear from the context what operation ⊕ means. Incremental
computation is often more efficient than recomputing Q (Fi ⊕ Mi ) starting from scratch since, in
practice, Mi is typically small and so isOi . Better still, it may be bounded: Its cost depends only on
the sizes of the changes Mi to input Fi and changes ΔOi to outputQ (Fi ), not on the size |Fi | of the
entire fragment Fi [29, 57], thus minimizing unnecessary recomputation.

Workflow. Based on partial evaluation and incremental computation, GRAPE works as follows.

(1) Plug. GRAPE offers a simple programming interface, as shown in Figure 1. For a class Q of
graph queries, developers need to specify three functions, PEval, IncEval, and Assemble in the
algorithm panel. PEval and IncEval are (often existing) sequential (single-machine) algorithms for
Q, for partial evaluation and incremental computation, respectively; and Assemble is typically
straightforward (see examples shortly). These can be picked from a library of graph algorithms;
the only addition is a specification of messages for communication between processors.
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Fig. 2. Workflow of GRAPE.

(2) Play. In the configuration panel, users may pick such a specification (PEval, IncEval, and
Assemble) registered for Q, a graph G, a graph partition strategy, and a number n of processors
to work with (Figure 1). Given a query Q ∈ Q and a partitioned graph G, GRAPE parallelizes
PEval, IncEval, and Assemble across n processors and computesQ (G ) in three phases, as shown in
Figure 2.

(a) Each processor Pi first executes PEval against its local fragment Fi to compute a partial answer

Q (Fi ) in parallel. This facilities data-partitioned parallelism via partial evaluation.

(b) Then each processor Pi may exchange partial results with other processors via synchronous
message passing under BSP [65]. Upon receiving messageMi , processor Pi incrementally computes
local answer Q (Fi ⊕ Mi ) by IncEval, operating on its local fragment Fi “updated” by Mi .

(c) The incremental step iterates until no further updates Mi can be made to any Fi . At this point,
Assemble pulls partial answers Q (Fi ⊕ Mi ) from Pi for i ∈ [1,n] and assembles Q (G ).

That is, GRAPE parallelizes sequential algorithms as a whole and computes a simultaneous fix-
point by taking IncEval as the intermediate consequence operator. It guarantees to reach a fixpoint
under a monotonic condition if the sequential algorithms are correct for Q. Moreover, it minimizes
iterative recomputation by using IncEval and supports graph-level optimization on Fi .

Example 1.1. Consider SSSP, a routine graph computation problem. Given a directed graph G
with edges labeled with positive weights and a source node s in G (as a query Q), the goal is to
find Q (G ) including the shortest distance dist(s,v ) from s to all nodes v in G.

Using GRAPE, one can pick the familiar Dijkstra’s algorithm [32] as PEval and a bounded se-
quential incremental algorithm of Ramalingam and Reps [56, 57] as IncEval. The algorithm of Ra-
malingam and Reps [56] essentially propagates changes to vertices or edges to other vertices in
the graph following an order defined on some “keys” of the affected vertices. Similarly, the algo-
rithm by Ramalingam and Reps [57] handles unit changes to graphs. The only addition to GRAPE

is that, for each fragment Fi , a variable dist(s,v ) of positive numbers is declared for each node v ,
initially∞ (except dist(s, s ) = 0). As shown in Figure 2, PEval first computes Q (Fi ); it then repeats
incremental steps IncEval to compute Q (Fi ⊕ Mi ), where messages Mi include updated (smaller)
dist(s,u) (due to new “shortcut” from s) for border nodes u (i.e., nodes with edges across differ-
ent fragments). GRAPE guarantees the termination of the fixpoint computation when no more
dist(s,v ) can be changed to a smaller value. At this point, Assemble takes a union of Q (Fi ) as
Q (G ), which is provably correct (see Section 3 for details).
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That is, we take sequential algorithms as PEval, IncEval, and Assemble and specify variables
dist(s,v ) for updating border nodes. GRAPE takes care of details such as message passing, load
balancing, and fault tolerance. There is no need to recast the algorithms into a new model.

Contributions. We propose GRAPE, which suggests a new approach to parallelizing (existing)
sequential graph algorithms, from foundation to implementation.

(1) We introduce the parallel model of GRAPE based on a fixpoint of partial evaluation and
(bounded) incremental computation (Section 3). We also present the programming model of
GRAPE. We show how GRAPE takes existing sequential graph algorithms as input and parallelizes
the entire algorithms, in contrast to parallelization of instructions or operators [53, 58].

(2) We prove two fundamental results (Section 4): (a) The Assurance Theorem guarantees that for
all queries Q ∈ Q and graphs G, GRAPE converges at correct answers Q (G ) under a monotonic
condition as long as its input sequential algorithms are correct, and (b) the Simulation Theorem
shows that MapReduce [22], Bulk Synchronous Parallel (BSP) [65], and Parallel Random Access
Machine (PRAM) [66] can be optimally simulated by GRAPE. As a consequence, algorithms devel-
oped for existing graph systems can be migrated to GRAPE without increasing complexity bounds.

(3) As examples, we show that a variety of graph computations can be readily parallelized by
GRAPE (Section 5). These include graph traversal (single-source shortest path queries SSSP), graph
pattern matching (via graph simulation Sim and subgraph isomorphism SubIso), Connected Com-
ponents (CC), and Collaborative Filtering (CF, as an example of machine learning). We show how
GRAPE easily parallelizes their sequential algorithms with minor revisions.

(4) We outline an implementation of GRAPE (Section 6). We show how GRAPE supports paralleliza-
tion, message passing, fault tolerance, and consistency. We also show how easily GRAPE imple-
ments graph-level optimization strategies such as indexing, compression, and dynamic grouping
since the sequential algorithms directly operate on fragments of a graph, which are graphs them-
selves. These are not supported by the state-of-the-art vertex-centric and block-centric systems.

(5) We experimentally evaluate GRAPE (Section 7) compared with (a) Giraph, an open-source
version of Pregel; (b) GraphLab, another vertex-centric system,; and (c) Blogel, the fastest block-
centric system we are aware of. Over real-life graphs, we find that, in addition to the ease of pro-
gramming, GRAPE achieves comparable performance to the state-of-the-art systems. For instance,
(a) on US road network traffic [2], GRAPE is on average 14,842, 3,992, and 756 times faster than
Giraph, GraphLab, and Blogel for SSSP, respectively, with 192 processors, due to the large diame-
ter of the graph. (b) On other real-life graphs excluding traffic, GRAPE is on average 484, 36, and
15 times faster than Giraph, GraphLab, and Blogel for SSSP; 151, 6.8, and 16 times for Sim; 149.3,
34.2, and 9.6 times for SubIso; and 4.6, 2.6, and 12.4 times for CF, respectively, when the number of
processors ranges from 64 to 192. (b) In the same setting (excluding traffic), GRAPE ships on aver-
age 0.07%, 0.12%, and 1.7% of the data shipped across machines by Giraph, GraphLab, and Blogel

for SSSP; 0.89%, 0.14%, and 4.9% for Sim; and 0.18%, 0.23%, and 0.11% for SubIso; 5.6%, 43.3%, and
3.2% for CF, respectively. When traffic is also included, GRAPE outperforms these systems by up
to 6 orders of magnitude in communication cost for SSSP. (c) Incremental steps effectively reduce
the cost and improve the performance of Sim by 9.6 times on average. (d) Optimization strategies
for sequential algorithms remain effective for GRAPE and improve Sim by 20% on average.

Related work. This article extends its conference version [31] as follows. (1) We provide new
proofs of the Assurance Theorem and the Simulation Theorem (Section 4). (2) We develop
algorithms for graph simulation Sim, subgraph isomorphism SubIso, connected components CC,
and CF (Section 5). The details of the algorithms were not included in our earlier work [31]. (3) We
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reconduct all experiments in our earlier work [31] by using larger graphs and more processors
to evaluate the scalability of GRAPE with the size of datasets and the parallel scalability with the
number of processors, as well as the communication costs. We also add a COST [51] analysis to
GRAPE (Section 7).

The other related work is categorized as follows.

Parallel graph systems. Several parallel models have been studied for graph computations, such as
PRAM [66], BSP [65], and MapReduce [22]. PRAM abstracts parallel RAM access over shared mem-
ory. A large collection of parallel graph algorithms are in place for PRAM. These algorithms may
need to be optimized for the shared-nothing architecture that is widely used today. MapReduce
makes parallel computation accessible to a large number of users but may not be very efficient
for iterative graph computations due to its blocking nature and I/O costs. BSP has proved more
appropriate for graph computations. It models parallel computations in supersteps (including lo-
cal computation, communication, and a synchronization barrier) to synchronize communication
among workers, such that messages from one superstep are accessible in the next one. Alterna-
tively, the Asynchronous Parallel (AP) model allows a worker to have immediate access to incom-
ing messages. Vertex-centric models [6, 49, 50] execute local computations defined at each vertex
in parallel.

Several parallel graph systems have been developed under these models. Pregel [50] (Giraph [6])
implements BSP with vertex-centric programming, where a superstep executes a user-defined
function at each vertex in parallel. GraphLab [49] supports both BSP and AP with vertex-centric
programming. Block-centric systems [63, 71] extend vertex-centric programming to blocks, to ex-
change messages among blocks and reduce communication costs. Giraph++ [63] supports graph-
centric programming to open up subgraphs to be programmed against. Blogel [71] allows blocks
to have their status as a “vertex” and supports block-level communication. Nonetheless, both Gi-
raph++ and Blogel still adopt the vertex-centric style of programming paradigm.

Popular parallel graph systems also include GraphX [34], GRACE [67], GPS [59], Mizan [46], and
Pregel+ [72] (see Yan et al. [70] for a recent survey). GraphX [34] recasts graph computation into
its distributed dataflow framework as a sequence of join and group-by stages punctuated by map
operations on the Spark platform. GRACE [67] provides an operator-level, iterative programming
model to enhance BSP with asynchronous execution. It provides a scheduler to control the order
of vertex computation in a block. The system works in single-machine environment, with a focus
on improving main memory utilization. GPS [59] implements Pregel with extended APIs and par-
tition strategies. It advocates an optimization strategy such that algorithms can “post” messages,
for a vertex to send the same message to all of its neighbors, by partitioning the neighbors of high-
degree nodes across different processors (via their mirrored nodes). Mizan [46] optimizes Pregel
with dynamic load balancing based on runtime monitoring of vertex computation. Pregel+ [72]
introduces optimized message reduction similar to GPS but with an additional cost model to
trade off mirroring and message combining costs. Both Mizan and Pregel+ are based on Pregel’s
model.

All these systems require recasting of existing sequential algorithms into a new model. For
example, synchronous vertex programs are required by Pregel-like systems [6, 46, 50, 59, 63, 72].
Sequential algorithms need to be recast to Gather-Aggregate-Scatter (GAS) vertex programs in
GraphLab [49]. When it comes to block-centric models [63, 71], sequential algorithms have to be
recast to block-level programs that treat each subgraph as a single vertex.

This work aims to show that it is possible to parallelize existing sequential graph algorithms
as a whole, without recasting the algorithms into a new model. GRAPE can simplify parallel pro-
gramming and make parallel graph computations accessible to a large group of users without a
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drastic degradation in performance or functionality. To this end, GRAPE adopts the synchroniza-
tion mechanism of BSP for its simplicity. As opposed to the prior systems, (a) GRAPE parallelizes
sequential algorithms based on fixpoint computation with partial evaluation and incremental com-
putation. (b) Following data-partitioned parallelism, given a partitioned graph, GRAPE allows
workers to operate on different fragments in parallel, and exchanges among workers only the
updated values of the status variables associated with border nodes. In contrast, for iterative com-
putations, MapReduce needs to repartition a graph and ship its entire state in each round [50]. (c)
The vertex-centric model of Pregel (synchronized) is a special case of GRAPE when each fragment
is limited to a single vertex. The communications of Pregel are via “interprocessor” messages, and
a message from a node often has to go through several supersteps to reach another node. GRAPE

reduces excessive messages and the scheduling cost of Pregel since communications within the
same fragment are local. GRAPE also facilitates graph-level optimization methods that are hard to
implement in vertex-centric systems (this is similarly so for asynchronized GraphLab). (d) Closer
to GRAPE are block-centric models [63, 71]. However, the programming interface of Tian et al. [63]
is still vertex-centric, and Yan et al. [71] is a mix of vertex-centric and block-centric programming
(V-compute and B-compute). The B-compute interface is essentially vertex-centric programming,
treating each block as a vertex. Users have to recast existing sequential algorithms into a new
model. In contrast, GRAPE takes sequential algorithms PEval and IncEval from the GRAPE li-
brary and applies them to blocks in parallel without recasting. (e) None of the prior systems uses
(bounded) incremental steps to speed up iterative computations. (f) To the best of our knowledge,
none of these systems provides assurance on termination and the correctness of parallel graph
computations.

Partial evaluation has been studied for certain XML [19] and graph queries [29]. There has also
been a host of work on incremental graph computation [24, 29, 57]. This work makes a first effort to
provide a uniform model by combining partial evaluation and incremental computation together
to parallelize sequential graph algorithms as a whole.

Parallelization of graph computations. A number of algorithms have been developed in Map-
Reduce, vertex-centric models, and others [29, 73]. In contrast, GRAPE aims to parallelize existing
sequential graph algorithms without revising their logic and work flow. Moreover, parallel algo-
rithms for MapReduce, BSP (vertex-centric or not), and PRAM can be easily migrated to GRAPE

(Section 4.2).
Prior work on automated parallelization has focused on the instruction or operator level [54,

58] by breaking dependencies via symbolic and automatic analyses. There has also been work at
the data partition level [75] to perform multilevel partitioning (“parallel abstraction”) and adapt
locality-optimized access to different parallel abstractions. In contrast, GRAPE aims to parallelize
sequential algorithms as a whole and make parallel computation accessible to end users, while oth-
ers [54, 58, 75] target experienced developers of parallel algorithms. There have also been tools for
translating imperative code to MapReduce (e.g., word count [55]). GRAPE advocates a different
approach by parallelizing the runs of sequential graph algorithms to benefit from data-partitioned
parallelism,without translation. This said, the techniques of other authors [54, 55, 58, 75] are com-
plementary to GRAPE.

Simulation results. Prior work has mostly focused on simulations between variants of PRAM with
different memory management strategies, to characterize bounds of slowdown for deterministic
or randomized solutions [38]. There has also been recent work on simulation of PRAM on MapRe-
duce and BSP [43]. In particular, Karloff et al. [43] define a framework MRC for MapReduce
computations and show that a large class of PRAM algorithms can be efficiently simulated by
MRC with certain restrictions. This work extends that of Fan et al. [31] by providing new optimal
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Table 2. Notations

Symbols Notations
Q A class of graph queries
Q A query Q ∈ Q
G Graph, directed or undirected

P0, Pi P0: coordinator; Pi : workers (i ∈ [1,n])
P Graph partition strategy
GP The fragmentation graph of G via partition strategy P
Fi The ith fragment of graph G via partition strategy P

Vi ,Ei Vertex set and edge set of fragment Fi , respectively
F Fragmentation (F1, . . . , Fn ) of graph G
Mi Messages designated to worker Pi

Fi ⊕ Mi Fragment Fi updated with message Mi

deterministic simulation results of MapReduce, BSP, and PRAM on GRAPE, adopting the notion
of optimal simulations [66].

2 PRELIMINARIES

We start with a review of basic notations.

Graphs. We consider graphs G = (V ,E,L) directed or undirected, where (1) V is a finite set of
nodes; (2) E ⊆ V ×V is a set of edges; (3) each node v in V (respectively, edge e ∈ E) carries L(v )
(respectively, L(e )), indicating its content, as found in social networks, knowledge bases, and prop-
erty graphs.

We use two notions of subgraphs. A graph G ′ = (V ′,E ′,L′) is called a subgraph of G if V ′ ⊆ V ,
E ′ ⊆ E, and for each node v ∈ V ′ (respectively, edge e ∈ E ′), L′(v ) = L(v ) (respectively, L′(e ) =
L(e )). A subgraphG ′ is said to be induced byV ′ if E ′ consists of all the edges inG whose endpoints
are both in V ′.

Partition strategy. Given a graph G and a number m, a graph partition strategy P partitions G
into fragments F = (F1, . . . , Fm ) such that each Fi = (Vi ,Ei ,Li ) is a subgraph ofG, E =

⋃
i ∈[1,m] Ei ,

V =
⋃

i ∈[1,m]Vi , and Fi resides at processor Pi for i ∈ [1,m]. In vertex partition (a.k.a. edge-cut) [12,
18]), a cut edge from fragment Fi to Fj has a copy in each of Fi and Fj . Denote by

� Fi .I (respectively, Fi .O
′) the set of nodes v ∈ Vi such that there exists an edge (v ′,v ) from

(respectively (v,v ′) to) a node v ′ in Fj (i � j);
� Fi .O (respectively, Fi .I

′) the set of nodes v ′ in some Fj (i � j) such that there exists an edge
(v,v ′) from (respectively, (v ′,v ) to) v ∈ Vi ; and

� F .O =⋃i ∈[1,m] Fi .O , F .O ′ =⋃i ∈[1,m] Fi .O
′, F .I =⋃i ∈[1,m] Fi .I , F .I ′ =

⋃
i ∈[1,m] Fi .I

′.

We refer to those nodes in Fi .I ∪ Fi .O
′ as the border nodes of fragment with regard to partition

strategy P. Note that F .I = F .O and F .I ′ = F .O ′.
In edge partition (a.k.a. vertex-cut) [47], the cut vertices are called entry vertices and exit ver-

tices for the partitions, which correspond to the sets F .O ∪ F .I ′ and F .I ∪ F .O ′, respectively. In
general, a border node is a vertex that relates to vertices or edges in two different fragments.

The fragmentation graph GP of G via P is an index such that, given each border node v in Fi .I
(respectively, Fi .O

′) (i ∈ [1,m]),GP (v ) retrieves a set of {j |v ∈ Fj .O } (respectively, {j |v ∈ Fj .I
′}).

As will be seen shortly, we will make use of GP to deduce the directions of messages.
The notations of this article are summarized in Table 2.
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3 PROGRAMMING WITH GRAPE

Here, we first introduce the parallel model of GRAPE. We then show how to program with GRAPE.
Following BSP [65], GRAPE works with a coordinator P0 and a set ofm workers P1, . . . , Pm .

3.1 The Parallel Model of GRAPE

Given a graph partition strategy P and sequential algorithms PEval, IncEval, and Assemble for a
class Q of graph queries, GRAPE parallelizes the computations as follows. It first partitions graph
G into fragments F = (F1, . . . , Fm ) with strategy P and distributes the fragments acrossm shared-
nothing virtual workers (P1, . . . , Pm ). It maps m virtual workers to n physical workers such that
fragment Fi resides at worker Pi for i ∈ [1,m]. When n < m, multiple virtual workers mapped to
the same worker share memory. It also constructs fragmentation graph GP . Note that graph G is
partitioned once for all queries Q ∈ Q posed on graph G.

Parallel model. Given a query Q ∈ Q, GRAPE computes answer Q (G ) to Q in the partitioned
graphG, as shown in Figure 2. Upon receivingQ at coordinator P0, GRAPE posts the same queryQ
to all the workers. To simplify the discussion, here we adopt synchronous message passing follow-
ing BSP [65]. We will show how GRAPE implements point-to-point communication in Section 6.
Furthermore, GRAPE also works under asynchronous parallel models [27].

Its parallel computation consists of the following three phases.

(1) Partial evaluation (PEval). In the first superstep, upon receiving query Q , each worker Pi com-
putes partial result Q (Fi ) locally at its fragment Fi using PEval, in parallel (for i ∈ [1,m]). It also
identifies and initializes a set of update parameters for each Fi that records the status of certain
nodes (e.g., border nodes). At the end of the process, it generates a message from the update pa-
rameters at each Pi and sends it to coordinator P0 (see Section 3.2 for update parameters).

(2) Incremental computation (IncEval). GRAPE iterates the following supersteps until it terminates.
Each superstep consists of two steps, one at the coordinator P0 and the other at the workers.

(2.a) Coordinator. Coordinator P0 checks whether for all i ∈ [1,m], worker Pi is inactive; that is,
Pi is done with its local computation and there exists no pending message designated for
Pi . If so, GRAPE invokes Assemble and terminates (see below). Otherwise, P0 composes a
message Mi by aggregating messages from the last superstep (see details shortly), sends Mi

to worker Pi for i ∈ [1,m], and triggers the next superstep.
(2.b) Workers. Upon receiving message Mi , worker Pi incrementally computes Q (Fi ⊕ Mi ) with

IncEval by treating Mi as updates, in parallel for all i ∈ [1,m]. Here, Fi ⊕ Mi denotes the
fragment Fi that is updated with message Mi ; that is, Fi after its update parameters are
changed with the values in Mi . At the end of the process, IncEval automatically finds the
changes to the update parameters in each Fi and sends the changes as a message to coordi-
nator P0 (see Section 3.3 for details).

GRAPE supports data-partitioned parallelism by partial evaluation on local fragments, in parallel
by all workers. Its incremental step (2.b) speeds up iterative graph computations by reusing the
partial results from the last superstep to minimize unnecessary recomputation.

(3) Termination (Assemble). The coordinator P0 decides to terminate the process if there exists
no more change to any update parameters (see (2.a) above). If so, P0 pulls partial results from all
workers and computes Q (G ) by invoking Assemble. It returns query answer Q (G ).

We will show in Section 4 that the parallel process converges at correct answers under a mono-
tonic condition as long as the sequential algorithms PEval, IncEval, and Assemble are correct;
moreover, the simple parallel model does not lose expressive power.
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3.2 PEval: Partial Evaluation

We now introduce the programming model of GRAPE. GRAPE provides a programming interface
for users to extend (existing) sequential algorithms with message declarations. GRAPE registers
the algorithms as stored procedures in its API library (Figure 1) and maps them to a query class Q.

More specifically, for a class Q of graph queries, one only needs to provide three core func-
tions: PEval, IncEval, and Assemble (see the Plug Panel in Figure 1), referred to as a PIE program.
These are conventional (existing) sequential algorithms and can be picked from the Library API
of GRAPE. We next elaborate the three functions in a PIE program.

Function PEval takes a query Q ∈ Q and a fragment Fi of G as input and computes partial
answersQ (Fi ) at worker Pi in parallel for all i ∈ [1,m]. It may be any existing sequential algorithm
for Q. One only needs to extend it with the following additions:

� partial result is kept in a designated variable; and
� message specification as its interface to IncEval.

Communication among workers is conducted via message passing. Messages are defined in
terms of update parameters of each fragment Fi as follows.

(1) Message preamble. Function PEval (a) declares status variables x̄ associated with vertices and
edges for each fragment Fi and (b) specifies a set Ci of nodes and edges relative to Fi .I or Fi .O

′

with regard to each fragment Fi . The status variables associated with Ci are denoted by Ci .x̄ and
are referred to as the update parameters of Fi . The variables are declared and initialized in PEval.
At the end of PEval, it sends the values of Ci .x̄ to coordinator P0.

Intuitively, variables in Ci .x̄ are the candidates to be updated by incremental steps. In other
words, messages Mi to worker Pi are updates to the values of variables in Ci .x̄ .

More specifically, in GRAPE,Ci is specified by an integer d and S , where S is either Fi .I or Fi .O
′.

That is,Ci is the set of nodes and edges within d-hops of nodes in S . In most cases, d = 0 andCi is
Fi .I or Fi .O

′. However, in some applications, one needsd ≥ 0, (e.g., subgraph isomorphism; SubIso,
see Section 5.1). In such cases, Ci may include nodes and edges from other fragments Fj of G.

A message Mi is a set of key-value pairs 〈x , val〉, where x is a status variable declared inCi .x̄ and
val is its value. GRAPE supports arbitrarily typed status variables; for example, val of Mi can be a
numeric value (e.g., in the algorithm for SSSP in Example 3.1), a multiset of tuples 〈r , key, value〉
(in the simulation of MapReduce in the proof of Theorem 4.2), or even a user-defined structure (a
class).

(2) Message segment. PEval specifies function aggregateMsg to resolve conflicts when multiple
messages from different workers attempt to assign different values to the same update parameter
(variable). When such a strategy is not provided, GRAPE picks a default exception handler.

(3) Message grouping. GRAPE deduces updates toCi .x̄ for i ∈ [1,m] and treats them as messages
exchanged among workers. More specifically, at coordinator P0, GRAPE identifies and maintains
Ci .x̄ for each worker Pi . Upon receiving messages from Pi ’s, GRAPE works as follows.

(a) Identifying Ci . It deduces Ci for i ∈ [1,m] by referencing fragmentation graph GP , and Ci

remains unchanged in the entire process. It maintains update parameters Ci .x̄ for Fi .
(b) Composing Mi . For messages from each Pi , GRAPE does the following:

(i) it identifies variables in Ci .x̄ with changed values;
(ii) it deduces the designations Pj of the messages by referencing the fragmentation graph

GP ; if P is edge-cut, the variable tagged with a node v in Fi .I will be sent to worker Pj if
v is in Fj .O (i.e., if j is in GP (v )). Similarly for v in Fi .O

′; if P is vertex-cut, it identifies
nodes shared by Fi and Fj (i � j); and
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Fig. 3. PEval for SSSP.

(ii) it combines all changed variable values designated to Pj into a single message Mj and
sends Mj to worker Pj in the next superstep for all j ∈ [1,m].

If a variable x is assigned a set S of values from different workers, function aggregateMsg is
applied to S to resolve the conflicts, and its result is taken as the value of x . When a node v has
copies vi ∈ Fi and vj ∈ Fj residing in different fragments; for example, when v is a border node
in Fi .O ∩ Fj .I (i � j ), vi .x and vj .x are treated as the same status variable x and are assigned the
same value.

These are automatically conducted by GRAPE, which minimizes communication costs by pass-
ing only updated variable values. To reduce the workload at the coordinator, alternatively, each
worker may maintain a copy of GP and deduce the designation of its messages in parallel (see
Section 6).

Example 3.1. We show how GRAPE parallelizes SSSP (see Example 1.1). Consider a directed
graph G = (V ,E,L) in which for each edge e , L(e ) is a positive number. The length of a path
(v0, . . . ,vk ) inG is the sum of L(vi−1,vi ) for i ∈ [1,k]. For a pair (s,v ) of nodes, denote by dist(s,v )
the shortest distance from s to v (i.e., the length of a shortest path from s to v). Given graph G and
a node s inV , GRAPE computes dist(s,v ) for all nodes v ∈ V . It adopts an edge-cut partition [18].
It deduces Fi .O by referencing GP and stores Fi .O at each fragment Fi .

As shown in Figure 3, PEval (Lines 1–14) is verbally identical to Dijkstra’s sequential algo-
rithm [32]. The only changes are the message preamble and segment (underlined). It declares an in-
teger variable dist(s,v ) for each nodev , initially∞ (except dist(s, s ) = 0). It specifies min as aggre-

gateMsg to resolve conflicts: If there are multiple values for the same dist(s,v ), the smallest value
is taken by the linear order on integers. The update parameters are Ci .x̄ = {dist(s,v ) | v ∈ Fi .O }.
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Fig. 4. IncEval for SSSP.

At the end of its process, PEval sendsCi .x̄ to coordinator P0. At P0, GRAPE maintains dist(s,v )
for all v ∈ F .O = F .I . Upon receiving messages from all workers, it takes the smallest value for
each dist(s,v ). It finds those variables with smaller values, deduces their destinations Pj by refer-
encing fragmentation graph GP , groups them into messages Mj , and sends Mj to worker Pj .

3.3 IncEval: Incremental Evaluation

Given query Q , fragment Fi , partial results Q (Fi ), and message Mi (updates toCi .x̄), IncEval com-
putes Q (Fi ⊕ Mi ) incrementally, making maximum reuse of the computation of Q (Fi ) in the last
round. Here, Fi ⊕ Mi denotes Fi updated with Mi . Each time after IncEval is executed, GRAPE

treats Fi ⊕ Mi and Q (Fi ⊕ Mi ) as Fi and Q (Fi ), respectively, for the next round of incremental
computation.

Function IncEval can be any existing sequential incremental algorithm for Q. It shares the mes-
sage preamble of PEval. At the end of the process, it identifies changed values to Ci .x̄ at each
fragment Fi and sends the changes as messages to P0. Upon receiving the messages at coordinator
P0, GRAPE composes these messages as described in 3(b) in Section 3.2.

Boundedness. Graph computations are typically iterative. GRAPE reduces the costs of iterative
computations by promoting bounded incremental algorithms for IncEval.

Consider an incremental algorithm IncEval for Q. Given G, Q ∈ Q, Q (G ) and updates M to G,
it computes ΔO such that Q (G ⊕ M ) = Q (G ) ⊕ ΔO , where ΔO denotes changes to the old output
Q (G ). It is said to be bounded if its cost can be expressed as a function in the size of |CHANGED| =
|M | + |ΔO | (i.e., the size of changes in the input and output [28, 57]). Intuitively, |CHANGED| rep-
resents the updating costs inherent to the incremental problem for Q itself. For a bounded IncEval,
its cost is determined by |CHANGED|, not by the size |Fi | of entire Fi , no matter how big |Fi | is.
That is, it reduces computation on possibly big Fi to smaller data bounded by O ( |CHANGED|).

Example 3.2. Continuing with Example 3.1, we provide IncEval in Figure 4. It is the sequential in-
cremental algorithm for SSSP developed in Ramalingam and Reps [56, 57], in response to changed
dist(s,v ) for v in Fi .I (here message Mi includes changes to dist(s,v ) for v ∈ Fi .I deduced from
GP ). Using a queue Que, it starts with Mi , propagates the changes to affected area, and updates
the distances (see Ramalingam and Reps [56, 57] for details). The partial result is now the revised
distances (Line 11).
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At the end of the process, IncEval sends to coordinator P0 updated values of those status variables
in Ci .x̄ , as in PEval. It applies aggregateMsg min to resolve conflicts.

The changes to the algorithm of Ramalingam and Reps [56, 57] are underlined in Figure 4.
Following those works [56, 57], one can show that IncEval is bounded: Its cost is determined by the
sizes of “updates” |Mi | and the changes to the output. This reduces the cost of iterative computation
of SSSP (the while and for loops).

Note that IncEval only needs to deal with changes Mi (for example, changes to dist(s,v ) for
v ∈ Fi .I in Example 3.2). That is, changes are restricted to the update parameters, rather than
generic updates.

3.4 Assemble Partial Results

Function Assemble takes partial results Q (Fi ⊕ Mi ) and fragmentation graph GP as input and
combines Q (Fi ⊕ Mi ) to get complete query answer Q (G ). It is triggered when no more changes
can be made to update parameters Ci .x̄ for any i ∈ [1,m].

Example 3.3. Continuing with Example 3.2, function Assemble (not shown) for SSSP takes
Q (G ) =

⋃
i ∈[1,n] Q (Fi ), the union of the shortest distance for each node in each Fi .

The GRAPE process terminates with correctQ (G ). Indeed, the updates toCi .x̄ are “monotonic”:
the value of dist(s,v ) for each node v decreases or remains unchanged. There are finitely many
such variables. Furthermore, dist(s,v ) is the shortest distance from s to v , as warranted by the
correctness of the sequential algorithms of Fredman and Tarjan [32], and Ramalingam and Reps
[56, 57] (i.e., PEval and IncEval).

Putting these together, one can see that a PIE program parallelizes a graph query class Q pro-
vided with a sequential algorithm (PEval) and a sequential incremental algorithm (IncEval) for
Q. Moreover, Assemble is typically a straightforward algorithm. A large number of sequential
(incremental) algorithms are already in place for various Q, after decades of study of graph com-
putations. Thus GRAPE is promising for making parallel graph computations accessible to a large
group of users.

Remark. Observe the following about PEval, IncEval, and Assemble.

(1) There have been methods for incrementalizing algorithms, to get incremental algorithms from
their batch counterparts [11, 24]. Moreover, incremental algorithm IncEval only needs to deal with
changes to status variables (update parameters), not necessarily generic updates (although to focus
on the main idea, we present IncEval using the familiar notion of incremental graph algorithms).
Such changes are aggregated by function aggregateMsg and depend on how aggregateMsg is
defined. Hence it is often not hard to develop IncEval by revising a batch algorithm in response
to changes to update parameters, as will be shown by the case of CC (connected components) in
Section 5.2.

(2) Incremental IncEval speeds up iterative computations by minimizing unnecessary recomputa-
tion of Q (Fi ) at each worker Pi , no matter if IncEval is bounded or not. Indeed, boundedness is not
the only criterion for the effectiveness of incremental algorithms. Alternative performance guar-
antees for incremental graph algorithms have been developed, such as semi-boundedness [28],
localizable incremental algorithms, and relative boundedness [24].

(3) In contrast to existing graph systems, GRAPE parallelizes sequential algorithms PEval and
IncEval as a whole, with the additional declaration of a message segment (PEval). As a result,
users do not have to “think like a vertex” [49, 50, 63, 71] when programming. As opposed to
vertex-centric and block-centric systems, GRAPE runs sequential algorithms on entire fragments.
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Moreover, IncEval employs incremental evaluation to reduce cost, which is a unique feature of
GRAPE.

(4) GRAPE aims to help users develop parallel programs, especially those who are more famil-
iar with conventional sequential programming. This said, users of GRAPE still need to know the
domain knowledge required to design update parameters and aggregate functions.

4 FOUNDATION OF GRAPE

We next present fundamental results underlying GRAPE. We first identify a condition under
which a PIE program guarantees to converge at correct answers under GRAPE (Section 4.1). We
then demonstrate the expressive power of GRAPE by simulating BSP, MapReduce, and PARM
(Section 4.2).

4.1 Correctness of Parallel Model

Consider a partition strategy P and a PIE program ρ for a class Q of graph queries, where ρ
consists of functions PEval, IncEval, and Assemble. Given a queryQ ∈ Q, a graphG, and a natural
number m, the GRAPE parallelization of ρ can be modeled as a simultaneous fixpoint operator
defined onm fragments. More specifically, it starts with PEval for partial evaluation and conducts
incremental computation by taking IncEval as the intermediate consequence operator:

R0
i = PEval(Q, F 0

i [x̄i ]),

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄i ],Mi ),

where for i ∈ [1,m], r indicates a superstep; F 0
i is the fragment Fi assigned to worker Pi by the

partition of G via P; F r
i [x̄i ] is fragment Fi at the end of superstep r carrying update parameters

Ci .x̄i ; Mi indicates changes to Ci .x̄i (via message); and Rr
i denotes partial results (including val-

ues of Ci .x̄i ) computed at fragment Fi after the (r + 1)-th superstep. The computation proceeds

until it reaches r0 such that Rr0

i = Rr0+1
i . At this point, Assemble(Rr0

1 , . . . ,R
r0
m ) is computed and

returned.
Note that the computation does not reach a fixpoint as long as update parameters Ci .x̄i keep

changing. This is consistent with the parallel model of GRAPE (Section 3.1).
There has been a large body of work on fixpoint computation to study (a) whether a fixpoint

computation converges [20, 35, 52, 74]; and (b) how to accelerate fixpoint computation [35, 40, 60,
69]. In this article, we mainly focus on (a). Issue (b) has been addressed in Fan et al. [27], which is
based on GRAPE.

As an example, here we identify one convergence guarantee for the simple parallel model as a
sufficient condition. We start with some notations.

(1) We say that PIE program ρ terminates under GRAPE with P if, for all queries Q ∈ Q and all

graphs G, there always exists r0 such that at superstep r0, Rr0

i = Rr0+1
i for all i ∈ [1,m].

(2) We say that a PIE program ρ with PEval, IncEval and Assemble is correct forQ with regard toP if,
for all queriesQ ∈ Q and all graphsG fragmented into F1, . . . , Fm with P, Assemble(Rr

1 , . . . ,R
r
m ) =

Q (G ) at any superstep r when update parameters in Rr
i (i ∈ [1,m]) have the same values as in Rr−1

i ,
where Q (G ) is the answer to Q inG, and Rr

i is the partial result computed at Fi after the (r + 1)-th
superstep.

We say that GRAPE correctly parallelizes ρ with partition strategy P if, for all queries Q ∈ Q
and all graphs G, ρ always terminates under GRAPE with P and returns Q (G ).

(3) We say that PEval and IncEval satisfy the monotonic condition with regard to partition strategy
P if, for graphs G and every variable x ∈ Ci .x̄ for i ∈ [1,m], (a) the values of x are from a finite

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 18. Publication date: December 2018.



Parallelizing Sequential Graph Computations 18:15

Fig. 5. Computation of a PIE program.

set computed from values in the active domain of G (i.e., the constants in G) and (b) there exists a
partial order ≤px

on the values of x such that IncEval decreases x in the order of px .
Intuitively, condition (a) says that x draws values from a finite domain, and condition (b) says

that x is updated “monotonically” following px . These ensure that PIE programs with PEval and
IncEval terminate under GRAPE withP. For instance, dist(s,v ) in Example 3.1 can only be changed
in the decreasing order (i.e., it is computed by function min for aggregateMsg of IncEval in the
active domain of G), and hence PEval and IncEval for SSSP satisfy the monotonic condition.

We next provide a condition that warrants the correctness of GRAPE parallelization.

Theorem 4.1 (Assurance Theorem). Consider a PIE program ρ with PEval, IncEval, and

Assemble for a class Q of graph queries. GRAPE correctly parallelizes ρ with a graph partition strat-

egy P if

(a) PEval and IncEval satisfy the monotonic condition with regard to P, and

(b) ρ with PEval, IncEval and Assemble is correct for Q with regard to P.

More specifically, (1) under the monotonic condition, the PIE program ρ guarantees to terminate
under GRAPE and, better yet, (2) it converges at correct answer Q (G ) for all queries Q ∈ Q and
all graphs G as long as the sequential algorithms PEval, IncEval, and Assemble of ρ are correct
for Q. In other words, condition (a) guarantees termination of a PIE program under GRAPE, and
conditions (a) and (b) put together guarantee the correctness of a PIE program under GRAPE.

Proof. We show the correctness of Theorem 4.1 by analyzing the computations of a PIE pro-
gram. Consider any run of a PIE algorithm depicted in Figure 5. Observe the following.

(1) Termination. Under the monotonic condition of Theorem 4.1, we have that . . . ≤px
Rr+1

i ≤px

. . . ≤px
R1

i ≤px
R0

i for all i ∈ [1,m]. Since R0
i ,R

1
i , . . . ,R

r+1
i , . . . are from a finite domain, we know

that there exists a number n such that Rt+1
i = Rt

i for all i ∈ [1,m] and t ≥ n. That is, ρ terminates.
(2) Correctness. From the preceding argument, it follows that ρ must terminate at some superstep
r0. Hence, by condition (b), Assemble(Rr0

1 , . . . ,R
r0
m ) = Q (G ) (i.e., ρ computes Q (G )). �

Remark. Observe the following.

(1) The fixpoint computation model does not reduce the expressive power of GRAPE. Indeed, (a)
fixpoint computation has sufficient expressive power; many data mining and machine learning
algorithms can be modeled as fixpoint computations [60, 69]. (b) We can conduct any computation
in PEval and IncEval, and hence by GRAPE. We will see a formal characterization in Section 4.2.

(2) The monotonic condition is a sufficient condition for GRAPE computations to converge, but it
is not a necessary condition. Indeed, there has been a large body of work on convergence [35, 40,
60, 69] from which other characterizations can be deduced.

(3) It does not mean that only algorithms satisfying the monotonic condition can be parallelized in
GRAPE. As will be shown by Theorem 4.2, any MapReduce algorithm can be migrated to GRAPE

without extra complexity, and not all MapReduce algorithms are monotonic. The monotonicity is
just a sufficient condition under which users do not have to worry about convergence.
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4.2 The Expressivity of GRAPE

We next show that the simple parallel model of GRAPE does not imply degradation in the expres-
sivity. As a result, GRAPE can readily switch to other parallel models without extra complexity.

Following Valiant [66], we say that a parallel modelM1 can optimally simulate modelM2 if there
exists a compilation algorithm that transforms any program with costC onM2 to a program with
cost O (C ) onM1. The cost includes computational and communication costs. For GRAPE, these
are measured by the running time of PEval, IncEval, and Assemble on all the processors and by
the total size of the messages passed among all the processors in the entire process.

We show that GRAPE optimally simulates popular parallel models MapReduce [22], BSP [65],
and PRAM [66]. Note that GRAPE parallelization is modeled as a simultaneous fixpoint computa-
tion. Moreover, GRAPE is a BSP system under the the following constraints: (1) in each round of
computation, GRAPE runs the same function PEval or IncEval, while other parallel systems may
run different user-defined functions in different rounds (e.g., MapReduce); and (2) GRAPE only al-
lows the status variables of the same vertex in different fragments to be exchanged, while there is
no such restriction in some other parallel systems. We show that, despite these restrictions, GRAPE

does not degrade in expressive power: It is as powerful as MapReduce, BSP, and PRAM.
As a consequence of the result, all algorithms developed for graph systems based on these

models can be migrated to GRAPE without increasing complexity bounds, including Pregel [50],
GraphX [34], Giraph++ [63], and Blogel [71]. The result below is stronger than its counterpart
in Fan et al. [31] in that it does not use key-value pairs (messages) in the simulation (see electronic
appendix for proof).

Theorem 4.2 (Simulation Theorem). (1) All BSP algorithms with n workers in k supersteps can

be optimally simulated on GRAPE with n workers in k supersteps;

(2) all MapReduce programs using n processors can be optimally simulated by GRAPE using n pro-

cessors; and

(3) all CREW PRAM algorithms using O (P ) total memory, O (P ) processors and t time can be run in

GRAPE in O (t ) supersteps using O (P ) processors with O (P ) memory.

Remark. (1) Theorem 4.2 aims to show the expressive power of GRAPE (e.g., all MapReduce al-
gorithms can be migrated to GRAPE without increasing the complexity bounds). Nonetheless, it is
possible that some simulated applications are not efficient in practice due to a possible large con-
stant in the simulation complexityO (C ) (see the proof of Theorem 4.2 in the electronic appendix).

(2) As indicated by Theorem 4.2, all parallel algorithms for MapReduce, BSP, and PRAM are also
supported by GRAPE. Moreover, those graph computations that have effective (e.g., bounded) in-
cremental algorithms can be accelerated by GRAPE.

(3) Compared with the vertex-centric model, the ability to run sequential algorithms over an en-
tire fragment has several benefits. One of them is that it can reduce the number of supersteps, as
demonstrated by SSSP. This is because within the fragment each worker can do some computation
that would have required extra supersteps in a vertex-centric system like Pregel. This is analogous
to running multiple “local-supersteps” in a worker before running a global superstep. Similarly, it
can reduce communication since no message passing is needed within a fragment, and this hap-
pens also because of the reduction in supersteps. Finally, because the sequential algorithms have
access to the entire fragment, existing sequential algorithms can be executed, and optimization
techniques that are developed for the sequential algorithms are inherited in the parallel setting.
Hence, GRAPE can speed up parallel computations and achieve better performance by conducting
efficient fragment-level local computations, without incurring excessive communication costs.
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(4) However, for algorithms that make only one or very few fragments “active” at a time, GRAPE

may not speed up their parallel computations. These include “local” queries to find neighbors of
a given node, or k nearest neighbors (kNN) queries with very small constant k . The evaluation of
such queries is restricted to a small subgraph localized by the given node. Such a localized sub-
graph may be entirely contained in one fragment at one worker, and hence may not fully enjoy
parallel processing unless we allow a fine-grained parallelization within the fragment by, for exam-
ple, using parallelized IncEval or partitioning the fragment into multiple small virtual fragments.
In addition, GRAPE may not make P-complete problems such as Depth First Search (DFS) more
efficient than other parallel platforms; these algorithms are inherently difficult to parallelize.

5 GRAPH COMPUTATIONS IN GRAPE

We have seen how GRAPE parallelizes graph traversal SSSP (Section 3). We next show how GRAPE

parallelizes existing sequential algorithms for a variety of graph computations. We take graph pat-
tern matching (defined in terms of graph simulation and subgraph isomorphism), graph connec-
tivity, and collaborative filtering as examples (Sections 5.1–5.3, respectively).

We adopt edge-cut [12, 18] in this section unless stated otherwise. Under vertex-cut [47] and
other graph partition strategies, PIE programs can be developed similarly.

5.1 Graph Pattern Matching

We start with graph pattern matching, which is commonly used in social media marketing [30],
social network analysis [25], and knowledge base expansion [23], among other things.

A graph pattern is a graph Q = (VQ ,EQ ,LQ ) in which (a) VQ is a set of query nodes, (b) EQ is a
set of query edges, and (c) each node u in VQ carries a label LQ (u).

We study two semantics of graph pattern matching.

Graph simulation. A graphG = (V ,E,L) matches a patternQ = (VQ ,EQ ,LQ ) via graph simulation

if there exists a binary relation R ⊆ VQ ×V such that

(a) for each query node u ∈ VQ , there exists a node v ∈ V such that (u,v ) ∈ R, and
(b) for each pair (u,v ) ∈ R, (i) LQ (u) = L(v ), and (ii) for each query edge (u,u ′) in EQ , there

exists an edge (v,v ′) in graph G such that (u ′,v ′) ∈ R.

For (u,v ) ∈ R, we refer to v as a match of u. It is known that if G matches Q , then there exists a
unique maximum relation [39], referred to asQ (G ). IfG does not matchQ , thenQ (G ) is the empty
set. Moreover, Q (G ) can be computed in O (( |VQ | + |EQ |) ( |V | + |E |)) time [25, 39].

Graph pattern matching via graph simulation is stated as follows.

� Input: A directed graph G and a graph pattern Q .
� Output: The unique maximum relation Q (G ).

We next show how GRAPE parallelizes graph simulation.

(1) PEval. GRAPE takes the sequential algorithm of Henzinger et al. [39] as PEval to computeQ (Fi )
in parallel. Its message preamble declares a Boolean status variable x (u,v ) for each query node u in
VQ and each nodev in Fi , indicating whetherv matchesu, initialized true. It takes Fi .I as candidate
set Ci .

Before giving the details of PEval, we first review the algorithm in Henzinger et al. [39]. The
simulation algorithm [39] computes the match set sim(u) for each query node u via least fixpoint
computation. The initial match set sim(u) contains all possible candidate matches of u. These
match sets are then iteratively refined by removing nonmatching nodes. The process stops when
a fixpoint is reached.
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Fig. 6. PEval for graph simulation in GRAPE.

As shown in Figure 6, the main body of PEval (Lines 3–17) is almost identical to the simula-
tion algorithm of Henzinger et al. [39], except the underlined parts to preprocess fragments. More
specifically, PEval first preprocess each fragment Fi by removing incoming edges and their as-
sociated “foreign nodes” and by including nodes to which there exists an outgoing edge from Fi

(Lines 1–2). Such preprocessing is conducted to comply with the semantics of simulation relations.
More specifically, the match status of a data node v (i.e., whether v matches some query node u)
is determined by the complete match status of all v’s outgoing neighbors. This also implies that
the match status of v is propagated and updated via the reverse direction of edges linked to v .
The preprocessing yields fragment Fi such that (a) for each nodev inVi \ Fi .O , the outgoing edges
fromv are all included in Ei ; and (b) for each nodev ′ in Fi .O , there exists no outgoing edge fromv ′

present in Ei . As a result, the match status ofVi \ Fi .O (i.e., of the nodes owned by Fi ) is computed
and updated in Fi at worker Pi , and the match status of nodes in Fi .O is computed and updated in
other fragments.

For each node u ∈ VQ , PEval starts with a set sim(u) of candidate matches v in Fi (Lines 3–8)
and iteratively removes from sim(u) those nodes that violate the simulation condition (Lines 9–
17). It uses post(v ) and pre(v ) to keep track of successors and predecessors of nodev , respectively
(see Henzinger et al. [39] for details). It refines sim(u) for all u ∈ VQ . The partial result Q (Fi )
is designated (Line 18). At the end of the process, PEval sends Ci .x̄ = {x (u,v ) | u ∈ VQ ,v ∈ Fi .I }
to coordinator P0. That is, the updated match status is propagated via the reverse direction of
edges.
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Fig. 7. IncEval for graph simulation.

At coordinator P0, GRAPE maintains x (u,v ) for all v ∈ F .I . Upon receiving messages from all
workers, it changes x (u,v ) to false if it is false in one of the messages. This is specified by min as
aggregateMsg, taking the order false ≺ true. GRAPE identifies those variables that become false,
deduces their destinations by referencing GP , groups them into messages Mj , and sends Mj to Pj .

(2) IncEval is the sequential incremental simulation algorithm of Fan et al. [28] in response to edge
deletions. The changes to sim(u) are “equivalent to” removing some nodes from sim(u), which
can be also seen as the results of removing some relevant edges. Thus, propagating the changes
of these nodes can be done by propagating the changes of deleted edges. Hence we can use the
algorithm of Fan et al. [28] for edge deletions. Note that we just make use of the algorithm for edge
deletions as IncEval to process changes to x (u,v ) , but IncEval does not have to handle generic edge
deletions in the graph.

As shown in Figure 7, if status variable x (u,v ) is changed to false by message Mi , it is treated as
deleting “cross edges” to v ∈ Fi .O . Using a stack (Line 1), it starts with changed status variables in
Mi , propagates the changes to the affected area, and removes from sim those matches that become
invalid (Lines 3–7; see Fan et al. [28] for more details). The partial result is now the revised sim

relation (Line 8). At the end of the process, IncEval sends to coordinator P0 those values of the status
variables inCi .x̄ that have been set false in the process, along the same lines as how PEval does it.

As shown in Fan et al. [28], IncEval is semi-bounded: Its cost is decided by the sizes of “updates”
|Mi | and changes to the affected area necessarily checked by all incremental algorithms for Sim,
not by |Fi |. This reduces the cost of iterative computation of graph simulation (the while and for

loops).

(3) Assemble simply takes Q (G ) =
⋃

i ∈[1,n] Q (Fi ), the union of all partial matches; that is, the sim

relation computed at each fragment Fi at the end of the process.

(4) The correctness of the GRAPE parallelization is warranted by Theorem 4.1 and the monotonic
updates toCi .x̄ . Indeed, x (u,v ) is initially true for each border nodev and is changed at most once to
false, taking the order false ≺ true. Furthermore, x (u,v ) denotes whetherv matchesu, as warranted
by the correctness of the sequential algorithms [28, 39] (PEval and IncEval).

Subgraph isomorphism. We next parallelize subgraph isomorphism, under which a match of
pattern Q in graph G is a subgraph of G that is isomorphic to Q . More specifically, a match of Q
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in G is a subgraph G ′ = (V ′,E ′,L′) of G such that there exists a bijective function h from VQ to V ′,
where (1) for each node u ∈ VQ , LQ (u) = L′(h(u)) and (2) e = (u,u ′) is an edge in Q if and only if
e ′ = (h(u),h(u ′)) is an edge in G ′ and LQ (e ) = L′(e ′).

Graph pattern matching via subgraph isomorphism seeks to compute the setQ (G ) of all matches
of Q in G. It is intractable: It is NP-complete to decide whether Q (G ) is nonempty.

GRAPE parallelizes TurboISO, the sequential algorithm of Han et al. [37] for subgraph isomor-
phism. It has two supersteps, one for PEval and the other for IncEval, outlined as follows.

(1) PEval identifies update parameters Ci .x̄ at each fragment Fi . It declares an integer variable
dist(s, t ) as the status variable for each pair of nodes s and t in Fi , to record their distance in
fragment Fi . It computes the dQ -neighbor NdQ

(s ) of each border node in s ∈ Fi .I ∪ Fi .O
′. Here, dQ

is the diameter of pattern Q ; that is, the length of the shortest path between any two nodes in Q
when Q is treated as an undirected graph; and Nd (v ) is the subgraph of G induced by the nodes
within d hops of v . At each Fi , Ci .x̄ consists of NdQ

(s ) for all s ∈ Fi .I ∪ Fi .O
′.

Intuitively, upon receiving update parameters Ci .x̄ from all workers, coordinator P0 completes
the dQ -neighbor of each border node s in the entire graphG and sends the dQ -neighbor to workers
where s resides to compensate information loss caused by fragmentation of graphG. After this step,
one can directly apply TurboISO to each expanded fragment in parallel.

More specifically, PEval computes Ci .x̄ at fragment Fi , as shown in Figure 8. PEval performs a
standard Breadth-First Search (BFS) traversal from each border node s in Fi .I ∪ Fi .O

′ to identify
(a) a set V (s ) of nodes that are reachable from s in dQ hops in Fi (Lines 2–10) and (b) a set E (s ) of
edges that are associated with nodes inV (s ) (Line 11). Here, fragment Fi is treated as an undirected
graph in the BFS traversal, ignoring the orientations of the edges (Line 7). PEval annotates each
node v in V (s ) with dist(s, t ) from s (Lines 8–9). These compose a local (annotated) dQ -neighbor
NdQ

(s ) in fragment Fi . To simplify the discussion, PEval sends these local NdQ
(s )’s to coordinator

P0 (Line 13). In practice, the union of all these dQ -neighbors is sent to P0 in a single message. The
size of such a message is bounded by the size |G | of graph G.

Upon receiving the local versions of NdQ
(s ) for all s in F .I ∪ F .O ′, coordinator P0 expands each

of them to the dQ -neighbor NdQ
(s ) in the entire graphG. This is specified by procedure Expand as

aggregateMsg, which performs a BFS-like traversal on the data received and combines necessary
nodes and edges by making use of fragmentation graph GP (see Section 2) and the annotations
associated with the nodes. A messageMi is composed and sent to worker Pi for i ∈ [1,m], including
all the nodes and edges in the dQ -neighbor of s in the entire graph G, for each s ∈ Fi .O ∪ Fi .I

′.

(2) IncEval is the sequential algorithm TurboISO [37]. Given a pattern Q and a graph G, TurboISO

finds all isomorphic matches of Q in G as follows. (1) It first picks a start vertex from query Q
and rewrites Q into a tree Q ′ by performing a BFS search. Each node in the tree corresponds to
a Neighborhood Equivalence Class (NEC), by merging nodes with the same labels and neighbor-
hoods. (2) Next, it explores “candidate regions” of Q ′ (i.e., subgraphs that subsume matches of Q).
(3) For each candidate region, it computes an order on the nodes in Q ′ based on the number of
their candidate matches in the region. (4) It then searches matches within the candidate region
in this order. During the search, it only combines partial matches of the NECs instead of inspect-
ing all possible enumerations. (5) Finally, it expands matches of the NECs to get exact matches
of Q .

As shown in Figure 9, IncEval computes Q (Fi ⊕ Mi ) at each worker Pi in parallel, on fragment
Fi extended with dQ -neighbor of each node in Fi .O ∪ Fi .I

′ by applying TurboISO. IncEval sends no
messages since the values of variables in Ci .x̄ remain unchanged. As a result, IncEval is executed
once, and hence two supersteps suffice.

(3) Assemble simply takes the union of all partial matches computed by IncEval from all workers.
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Fig. 8. PEval for subgraph isomorphism.

Fig. 9. IncEval for subgraph isomorphism.
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Fig. 10. PEval for CC.

(4) The correctness of the process is assured by TurboISO and the locality of subgraph isomorphism:
A pair (v,v ′) of nodes in G is in a match of Q only if v is in the dQ -neighbor of v ′.

5.2 Graph Connectivity

We next study graph connectivity for computing connected components (CC).
Consider an undirected graph G. A subgraph Gs of G is a connected component of G if (a) it is

connected (i.e., for any pair (v,v ′) of nodes inGs , there exists a path between v to v ′), and (b) it is
maximum (i.e., adding any node to Gs makes the induced subgraph no longer connected).

The CC problem is stated as follows and is known to be in O ( |G |) time [13].

� Input: An undirected graph G = (V ,E,L).
� Output: All connected components of G.

GRAPE parallelizes CC as follows. It picks a sequential CC algorithm as PEval. At each fragment
Fi , PEval computes its local connected components and creates their ids. The component ids of
the border nodes are exchanged with neighboring fragments. The (changed) ids are then used to
incrementally update local components in each fragment by IncEval, which simulates a “merging”
of two components whenever possible, until no more changes can be made.

(1) PEval declares an integer status variable v .cid for each node v in fragment Fi , initialized as its
node id. As shown in Figure 10, PEval first uses a standard sequential Depth-First Search (DFS)
traversal to compute the local connected components of Fi (Line 1). For each local component C ,
(a) PEval creates a “root” node vr carrying the minimum node id inC as vr .cid (Lines 3–4) and (b)
links all the nodes inC tovr , and sets their cid asvr .cid (Lines 5–6). These can be completed in one
pass of the edges of Fi via DFS. At the end of process, PEval sends {v .cid | v ∈ Fi .I } to coordinator
P0. In other words, the set consists of the update parameters at fragment Fi .

At P0, GRAPE maintains v .cid for each v ∈ F .I . It updates v .cid by taking the smallest cid, if
multiple cids are received, by taking min as aggregateMsg in the message segment of PEval. It
groups the nodes with updated cids into messages Mj and sends Mj to Pj by referencing GP .

(2) IncEval incrementally updates the cids of the nodes in each fragment Fi upon receiving Mi , in
parallel, as shown in Figure 11. Observe that message Mi sent to Pi consists of v .cid with updated
(smaller) values. For each v .cid in Mi , IncEval finds the root vr of v (Line 3) and updates vr .cid to
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Fig. 11. IncEval for CC.

the minimal one (Lines 4–5). IncEval then propagates the changes from every updated root node
vr to all nodes linked to vr by changing their cids to vr .cid (Lines 6–8). At the end of the process,
IncEval sends to coordinator P0 the updated cids of nodes in Fi .I , just as in PEval.

One can verify that the incremental algorithm IncEval is bounded: It takesO ( |Mi |) time to iden-
tify the root nodes and O ( |AFF|) time to update cids by following the direct links from the roots,
where AFF consists of only those nodes with their cid changed. Hence, it avoids redundant local
traversal.

(3) Assemble merges all the nodes having the same cid in a bucket as a single connected component,
and returns the set of all these buckets as all the connected components.

(4) Correctness. The process terminates as the cids of the nodes are monotonically decreasing by
the definition of aggregateMsg until no changes can be made. Moreover, it correctly merges two
local connected components by propagating the smaller component id.

5.3 Collaborative Filtering

As an example of machine learning, we consider collaborative filtering (CF) [48], a method com-
monly used for inferring user-product rates in social recommendation. It takes as input a bipartite
graph G that includes two types of nodes, namely, users U and products P , and a set of weighted
edges E ⊆ U × P . (1) Each user u ∈ U (respectively, product p ∈ P ) carries an (unknown) latent
factor vector u . f (respectively, p. f ). (2) Each edge e = (u,p) in E carries a weight r (e ), estimated
as u . f T ∗ p. f (possibly ∅, i.e., “unknown”) that encodes a rating from user u to product p. The
training set ET refers to edge set {e ∈ E | r (e ) � ∅}; that is, all the known ratings. The CF problem
is as follows.

� Input: Directed bipartite graph G, training set ET .
� Output: The missing factor vectors u . f and p. f that minimizes an error function ϵ ( f ,ET ),

estimated as min
∑

((u,p )∈ET ) (r (u,p) − u . f T ∗ p. f )2 + λ(‖u . f ‖2 + ‖p. f ‖2).

That is, CF predicts all the unknown ratings by learning the factor vectors that “best fit” ET .
A common practice to approach CF is to use the Stochastic Gradient Descent (SGD) algo-

rithm [48], which iteratively (1) computes a prediction error ϵ (u,p) = r (u,p) − u . f T ∗ p. f , for each
e = (u,p) ∈ ET and (2) updates u . f and p. f accordingly toward minimizing ϵ ( f ,ET ).
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Fig. 12. PEval for CF.

The SGD algorithm [48] is inherently sequential. To parallelize it, a nice idea has been proposed
by DSGD [33], based on a partition of the dataset such that, at each round of computation, different
workers can process disjoint datasets independently without conflicts. More specifically, it parti-
tions the user setU intom disjoint subsetsU (1),U (2), . . . ,U (m), and, similarly, the product set P
into disjoint P (1), P (2), . . . , P (m) such thatU =

⋃m
i=1U (i ) and P =

⋃m
j=1 P (j ), for a constantm. Cor-

respondingly, the training set E is divided intom2 blocks, such that each 1 ≤ i, j ≤ m, a block E (i, j )
identified by a pair (i, j ), is the subset of E induced byU (i ) and P (j ). Clearly, E =

⋃
1≤i, j≤m E (i, j ).

Two blocks E (i, j ) and E (i ′, j ′) are independent if i � i ′ and j � j ′. DSGD parallelizes SGD by utiliz-
ing the property that the factor vectors of independent blocks can be updated in parallel without
conflicts.

Adopting the partition strategy of DSGD, GRAPE parallelizes the sequential SGD algorithm
such that different workers can run SGD on different fragments of a graph G in parallel with-
out conflicts. GRAPE partitions G by a vertex-cut strategy and distributes the m2 blocks into m
different fragments. More specifically, it defines Fi = (Vi ,Ei ,Li ), where Vi = U (i ) ∪⋃m

j=1 P (j ) and

Ei =
⋃m

j=1 E (i, j ) (P is shared by all fragments while U is partitioned across different workers).

(1) PEval declares a status variable v .x = (v . f , t ) for each node v , where v . f is the factor vector
of v (initially ∅) and t is an integer (initially 0) that bookkeeps a timestamp at which v . f is last
updated. The candidate set Ci consists of the border nodes in set Fi .I .

As shown in Figure 12, PEval essentially runs the sequential SGD algorithm of Koren et al. [48]
on the training block E (i, i ) as follows. Each time it picks an edge (u,p) from the training set
uniformly at random and computes the prediction error ϵ (u,p), and it updates local factor vectors
by a magnitude proportional to γ in the opposite direction of the gradient as:

u . f t = u . f t−1 + γ (ϵ (u,p) ∗ p. f t−1 − λ ∗ u . f t−1); (1)
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Fig. 13. IncEval for CF.

p. f t = p. f t−1 + γ (ϵ (u,p) ∗ u . f t−1 − λ ∗ p. f t−1). (2)

By the partition strategy, the training blocks E (1, 1), E (2, 2), . . . ,E (d,d ) on different fragments line
up on the diagonal of the rating matrix and are independent of each other. At the end of its process,
PEval sends message Mi that consists of updated v .x for nodes v ∈ Ci to coordinator P0.

At coordinator P0, GRAPE maintains v .x = (v . f , t ) for all border nodes v ∈ F .I = F .O . Upon
receiving updated values (v . f ′, t ′) with t ′ > t , it changesv . f tov . f ′ (i.e., it defines aggregateMsg

as max on timestamps). This is well-defined since different workers process independent blocks.
GRAPE then groups the updated vectors into messages Mj and sends Mj to Pj as usual. That is,
GRAPE passes the latest updates to factor vectors to workers.

In addition, coordinator P0 selects m independent blocks to be processed in the next round. To
do this, P0 simply picks a permutation p1p2 . . .pm of {1, 2, . . . ,m} following some fixed strategy
(e.g., simple cycle scheduling). It sends a pair (j,pj ) along with Mj to Pj . By the partition strategy,
block E (j,pj ) belongs to Fj and E (j,pj ) is independent of E (i,pi ) if j � i .

(2) IncEval iteratively updates the factor vectors of independent blocks. As shown in Figure 13,
IncEval first updates the factor vectors with the latest changes (Lines 1–2). It then extracts the
training set Bi for the current round based on the block identifier assigned by P0 (Line 3) and
runs the sequential SGD algorithm [48] on Bi just like PEval (Line 4). Since the training sets B1,
B2, . . . ,Bd are extracted from the independent blocks E (1,p1), E (2,p2), . . . ,E (d,pd ), they can be
processed in parallel without conflict. At the end of the process, it sends the updated vectors inCi

like PEval.

(3) Assemble simply takes the union of all the factor vectors of nodes from all the workers.

(4) Correctness. Observe that a permutation p1p2 . . .pm of {1, 2, . . . ,m} corresponds to a m-
monomial stratum of DSGD [33]. The permutation in each round is picked according to a stratum
selection strategy. It is known that the strategy guarantees the convergence of DSGD (see Gemulla
et al. [33] for more details). As a result, GRAPE converges and correctly infers CF models by the
correctness of DSGD.

6 IMPLEMENTATION OF GRAPE

We next outline an implementation of parallel graph engine GRAPE.

Architecture overview. GRAPE adopts a four-tier architecture, depicted in Figure 14.
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Fig. 14. GRAPE architecture.

(1) Its top layer is a user interface. As shown in Figure 1, GRAPE supports interactions with (a)
developers who specify and register sequential PEval, IncEval, and Assemble as a PIE program for
a class Q of graph queries (the plug panel) and (b) end users who make use of PIE programs from
API library, pick a graph G, enter queries Q ∈ Q, and “play” (the play panel). GRAPE parallelizes
the PIE program, computes Q (G ), and displays Q (G ) in result and analytics consoles.

(2) At the core of the system is a parallel query engine. It manages sequential algorithms registered
in the GRAPE API, makes parallel evaluation plans for PIE programs, and executes the plans for
query answering (see Section 3.1). It also enforces consistency control and fault tolerance (see
below).

(3) Underlying the query engine are (a) an MPI Controller (message passing interface) for commu-
nications between coordinator and workers, (b) an Index Manager for loading indices, (c) a Partition

Manager to partition graphs, and (d) a Load Balancer to balance workload (see below).

(4) The storage layer manages graph data in the Distributed File System (DFS). It is accessible to
the query engine, Index Manager, Partition Manager, and Load Balancer.

Message passing. The MPI Controller of GRAPE makes use of a standard MPI for parallel and
distributed programs. It currently adopts MPICH [5], which is also the basis of other parallel graph
systems such as GraphLab [49] and Blogel [71]. It generates messages and coordinates messages
in synchronization steps using standard MPI primitives.

We remark that, at the conceptual level, to simplify the discussion, we adopt a coordinator to
aggregate messages (Section 3). In practice, GRAPE implements point-to-point message passing
instead: Workers exchange messages directly without going through a coordinator, accumulate
messages received in a buffer, and the aggregation function is invoked at each worker. It is easy
to verify that this implementation and the centralized aggregation with a coordinator produce the
same results since the aggregation function is invoked after all messages are received.

Graph partition. The Graph Partitioner supports a variety of built-in partition algorithms. Users
may pick (a) METIS, a fast heuristic algorithm for sparse graphs [44]; (b) an edge-cut partition [12,
18] and a vertex-cut partition [47]; (c) 1-D and 2-D partitions [17], which distribute vertex and
adjacent matrix to the workers, respectively, with an emphasis on maximizing the parallelism
of graph traversal; and (d) a fast streaming-style partition strategy [62] that assigns edges to
high-degree nodes to reduce cross edges. New data partition strategies can also be deployed at
GRAPE.
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Multithread. GRAPE supports multithreading. At each worker, there are multiple working
threads, each acting as a virtual worker and handling one fragment. During computation, the
threads at the same worker are maintained in a pool; a main thread at the worker takes the re-
sponsibility of assigning fragments and workload to idle threads in the pool. At the end of each
round of the computation, the main thread generates messages and communicates with peer work-
ers. The main thread is able to process messages in a buffer even when its working threads are still
computing. This allows workers to overlap computation and communication and reduce response
time.

Graph-level optimization. In contrast to prior graph systems, GRAPE supports data-partitioned
parallelism by parallelizing the runs of sequential algorithms. Since fragments of a graph are
graphs themselves, all optimization strategies developed for sequential (batch and incremental)
algorithms can be readily used by GRAPE to improve the performance of PEval and IncEval over
graph fragments. As examples, next we outline some of the graph-level optimization strategies.

(1) Indexing. Any indexing structure effective for sequential algorithm can be computed offline
and directly used to optimize PEval, IncEval, and Assemble. GRAPE can support indices including
(1) a 2-hop index [21] for reachability queries and (2) a neighborhood-index [45] for candidate
filtering in graph pattern matching. Moreover, new indices can be incorporated into the GRAPE

API library.

(2) Compression. Another strategy is query preserving compression [26] at the fragment level. Given
a query class Q and a fragment Fi , each worker Pi computes a smaller F c

i offline via a compression
algorithm, such that for any queryQ in Q,Q (Fi ) can be computed from F c

i without decompressing
F c

i , regardless of what sequential PEval and IncEval are used. As shown in Fan et al. [26], this
compression scheme is effective for graph pattern matching and graph traversal, among other
things.

(3) Dynamic grouping. GRAPE dynamically groups a set of border nodes by adding a “dummy”
node and sends messages from the dummy nodes in batches, instead of one by one. This effectively
reduces the amount of message passing in each synchronization step.

To the best of our knowledge, many of these optimization strategies are not supported by the
state-of-the-art vertex-centric and block-centric graph query systems. For instance, indexing and
query-preserving compression for sequential algorithms do not carry over to vertex-centric pro-
grams, and block-centric programming essentially treats blocks as vertices rather than graphs.

Fault tolerance. GRAPE employs an arbitrator mechanism to recover from both worker failures
and coordinator failures (i.e., single-point failures). More specifically, it reserves a worker Pa as ar-
bitrator and a worker S ′c as a standby coordinator. It keeps sending heartbeat signals to all workers
and the coordinator. In case of failure, (a) if a worker fails to respond, the arbitrator transfers its
computation tasks to another worker; and (b) if the coordinator fails, it activates the standby coor-
dinator S ′c to continue parallel computation. It is also possible for GRAPE to adopt the optimistic
recovery mechanism introduced in Schelter et al. [60] for general fixpoint paradigm [15].

Consistency. Multiple workers may update copies of the same status variable. To cope with this,
(a) GRAPE allows users to specify a conflict resolution policy as function aggregateMsg in PEval

(Section 3.2), (e.g., min for SSSP and CC (Section 5)), based on a partial order on the domain of
status variables (e.g., linear order on integers). Based on the policy, inconsistencies are resolved in
each synchronization step of the PEval and IncEval processes. Moreover, Theorem 4.1 guarantees
the consistency when the policy satisfies the monotonic condition. (b) GRAPE also supports default
exception handlers when users opt not to specify aggregateMsg. In addition, GRAPE allows users
to specify generic consistency control strategies and register them in the GRAPE API library.
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7 EXPERIMENTAL STUDY

Using real-life and synthetic graphs, we next empirically evaluate GRAPE for its (1) efficiency
and scalability, (2) communication costs, (3) effectiveness of incremental steps, and (4) compati-
bility with optimization techniques developed for sequential graph algorithms. We used real-life
graphs larger than those that Fan et al. [31] experimented with. We evaluated the performance
of GRAPE compared with Giraph (a open-source version of Pregel), GraphLab, and Blogel (the
fastest block-centric system we are aware of). We compared GRAPE with the prior graph systems
by parallelizing existing sequential algorithms with a preliminary implementation of GRAPE [9].

Experimental setting. We used five real-life graphs of different types, including

(1) movieLens [3], a dense recommendation network (bipartite graph) that has 20 million movie
ratings (as weighted edges) between 138,000 users and 27,000 movies;

(2) UKWeb [1], a Web graph with 133 million nodes and 5 billion edges;
(3) DBpedia [7], a knowledge base with 5 million entities and 54 million edges, with 411 labels;
(4) Friendster [4], a social network with 65 million users and 1.8 billion links; and
(5) traffic [2], a road network with 23 million nodes (locations) and 58 million edges.

To make use of unlabeled Friendster for Sim and SubIso, we assigned up to 100 random labels
to nodes. We also randomly assigned weights to UKWeb, traffic, and Friendster for testing SSSP.

Synthetic graphs. To evaluate the scalability of GRAPE (Exp-1 and Exp-2), we also developed a
generator to produce synthetic graphsG = (V ,E,L) controlled by the numbers of nodes |V | (up to
250 million) and edges |E | (up to 2.5 billion), with L drawn from an alphabet L of 100 labels.

Partitioning and Loading. We used XtraPuLP [61] as the default graph partition strategy. In theory,
GRAPE works regardless of what partitioning strategy is used and guarantees to converge under
the conditions given in Theorem 4.1. In practice, different strategies may yield partitions with
various degrees of skewness and stragglers, which have an impact on the performance of GRAPE.
Here, we picked XtraPuLP, which is widely used in practice. On Friendster, for example, XtraPuLP
took about 16 minutes, and our computations took at most 62 seconds. However, graph partitioning
is performed once offline. Afterward, various queries are answered online on the same partition.
The partitioning costs for traffic, UKWeb, DBpedia, and movieLens are 6.0, 598.1, 32.2, 4.3 seconds,
respectively.

GRAPE loads graph data from a distributed file system by each worker simultaneously. It takes
four workers about 20 minutes to import Friendster for the first time (16s, 24m, 44s, 10s for traffic,
UKWeb, DBpedia, movieLens, respectively). After the first loading, the graph is “serialized” to the
storage in a compact format, which largely reduces the loading time to 40s (2s, 86s, 4s, 2s for traffic,
UKWeb, DBpedia, movieLens, respectively) for reloading afterward when necessary.

It should be remarked that GRAPE is able to load a graphG once and process the query workload
(i.e., a set of queries) posed on G without reloading G. In contrast, GraphLab, Giraph, and Blogel

require the graph to be reloaded each time a single query is issued, and loading is costly over large
graphs. In favor of these systems, we exclude the loading cost when reporting the experimental
results.

Queries. We randomly generated the following queries for SSSP, Sim, and SubIso. (a) We sampled
10 source nodes in each graph used and constructed an SSSP query for each node. (b) We generated
20 pattern queries for Sim and SubIso, controlled by |Q | = ( |VQ |, |EQ |) (the number of nodes and
edges, respectively) using labels drawn from the graphs experimented with.

Algorithms. We implemented the PIE programs (PEval, IncEval, and Assemble) for the query classes
given in Sections 3 and 5, namely, SSSP, Sim, SubIso, CC, and CF, which are registered in the API
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library of GRAPE. We adopted basic sequential algorithms and only used optimized Sim to demon-
strate how GRAPE inherits optimization strategies developed for sequential algorithms (Exp-3).

We also implemented algorithms for these query classes for Giraph, GraphLab, and Blogel. We
used the “default” code provided by the systems when available and made our best efforts to de-
velop “optimal” algorithms otherwise. We also used the “default” graph partition algorithms pro-
vided by these systems (i.e., hash partitioning for GraphLab and Giraph and Voronoi partitioning
for Blogel). We implemented synchronized algorithms for both GraphLab and Giraph for the ease
of comparison. As observed by other works [40, 41, 68], neither asynchronous model nor synchro-
nous model outperform the other for different algorithms, input graphs, and cluster scales. We
expect the observed relative performance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each with 16 processors (Intel Xeon
2.2GHz) and 128G memory (thus in total 192 processors). This is the best configuration we could
afford. Each experiment was repeated 5 times, and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency and scalability of GRAPE by varying the num-
ber n of processors used, from 64 to 192. For each algorithm, we chose datasets based on its ap-
plications in the real world to demonstrate meaningful computations. For SSSP and CC, we ex-
perimented with real-life graphs UKWeb, traffic, and Friendster. For Sim and SubIso, we used
Friendster and DBpedia. We used movieLens for CF as its application in movie recommendation.

(1) SSSP. Figure 15(a-c) reports the performance of the systems for SSSP over Friendster, UKWeb,
and traffic, respectively. We report the average over 10 SSSP queries on each graph. The results
on other graphs are consistent (not shown). From the results, we can see the following.

(a) GRAPE outperforms Giraph, GraphLab. and Blogel by 14,842, 3,992 and 756 times, respectively,
over traffic with 192 processors (Figure 15(a)). In the same setting, it is 556, 102, and 36 times faster
over UKWeb (Figure 15(b)), and 18, 1.7, and 4.6 times faster over Friendster (Figure 15(c)). These re-
sults demonstrate that by simply parallelizing sequential algorithms without further optimization,
GRAPE already outperforms the state-of-the-art systems in response time for SSSP.

The improvement of GRAPE over all the systems on traffic is much larger than on Friendster and
UKWeb since the traffic graph has a larger diameter. In addition, (i) for Giraph and GraphLab, this
is because synchronous vertex-centric algorithms take more supersteps to converge on graphs
with large diameters, such as traffic. Using 192 processors, Giraph take 10, 749 supersteps over
traffic and 161 over UKWeb; similarly for GraphLab. In contrast, GRAPE is not vertex-centric, and
it takes 31 supersteps on traffic and 24 on UKWeb. (ii) Blogel also takes more (1, 690) supersteps
over traffic than over UKWeb (42 supersteps) and Friendster (23 supersteps). It generates more
blocks over traffic (with larger diameter) than UKWeb and Friendster. Since Blogel treats blocks
as vertices, the benefit of parallelism is degraded with more blocks.

(b) In all cases, GRAPE take less time when n increases. On average, it is 1.4, 2.3, and 1.5 times
faster for n from 64 to 192 over traffic, UKWeb, and Friendster, respectively. (i) Compared with the
results in Fan et al. [31] using less processors, this improvement degrades a bit. This is mainly be-
cause the larger number of fragments leads to more communication overhead. On the other hand,
such impact is significantly mitigated by IncEval that only ships changed update parameters. (ii) In
contrast, Blogel does not demonstrate such consistency in scalability. It takes more time on traffic

when n is larger. When n varies from 160 to 192, it also takes longer over Friendster. Its commu-
nication cost dominates the parallel cost as n grows, “canceling out” the benefit of parallelism.
(iii) GRAPE has scalability comparable to GraphLab over Friendster and scales better over UKWeb
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Fig. 15. Efficiency of GRAPE.

and traffic. Giraph has better improvement with larger n, but with constantly higher cost (see (a))
than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average 22 supersteps, while Giraph,
GraphLab, and Blogel take 3,647, 3,647, and 585 supersteps, respectively. This is because GRAPE

runs sequential algorithms over fragmented graphs with cross-fragment communication only
when necessary, and moreover, IncEval ships only changes to status variables. In contrast, Giraph,
GraphLab, and Blogel pass vertex-vertex (vertex-block) messages.

(d) SSSP under Blogel runs in VB-model. In each superstep, it first runs V-compute over all vertices
to identify “active” vertices (i.e., vertices whose distance value is updated); it then runs B-compute
on active vertices within blocks. Compared with pure vertex-centric models, running a sequential
algorithm within blocks reduces communication cost. However, its V-compute incurs redundant
computations since it runs over all vertices in each superstep. In contrast, GRAPE runs sequential
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algorithms within partitions and leverages incremental computation to reduce redundant compu-
tation and communication cost. In each round, IncEval only runs on affected vertices.

(2) CC. Figure 15(d, e) reports the performance for CC detection and tells us the following. (a) Both
GRAPE and Blogel substantially outperform Giraph and GraphLab. For instance, when n = 192,
GRAPE is on average 12,094 and 1,329 times faster than Giraph and GraphLab, respectively. (b)
Blogel is faster than GRAPE in some cases (e.g., 3.5 seconds vs. 17.9 seconds over Friendster when
n = 192). This is because Blogel embeds the computation of CC in its graph partition phase as
precomputation, while this graph partition cost (on average 357 seconds using its built-in Voronoi
partition) is not included in its response time. In other words, without precomputation, the per-
formance of GRAPE is already comparable to the near “optimal” case reported by Blogel.

CC in GRAPE also works better than the one in Giraph++ [63]. This is because, after exchanging
messages between blocks, Giraph++ invokes computation on all internal vertices and a large part
of the computation is redundant. In contrast, IncEval of GRAPE processes only those affected
vertices by capitalizing on auxiliary indices that were inherited from sequential algorithms.

(3) Sim. Fixing |Q | = (6, 10) (i.e., patternsQ with 6 nodes and 10 edges), we evaluated graph simula-
tion over DBpedia and Friendster. As shown in Figure 15(g, h), (a) GRAPE consistently outperforms
Giraph, GraphLab, and Blogel over all queries. It is 109, 8.3, and 45.2 times faster over Friendster,
and 136.7, 5.8, and 20.8 times faster over DBpedia for 20 queries on average, respectively, when
n = 192. (b) GRAPE scales better with the number n of processors than the others. (c) GRAPE takes
at most 21 supersteps, while Giraph, GraphLab, and Blogel take 38, 38, and 40 supersteps, respec-
tively. This empirically validates the convergence guarantee of GRAPE under monotonic status
variable updates and its effect on reducing computation and communication costs.

(4) SubIso. Fixing |Q | = (3, 5), we evaluated the performance of the systems for subgraph isomor-
phism. As shown in Figure 15(i, j), over Friendster and DBpedia, respectively, (a) GRAPE is on
average 76, 35, and 9 times faster than Giraph, GraphLab mand Blogel when n = 192. (b) When n
varies from 64 to 192, GRAPE is on average 1.3 and 1.2 times faster over Friendster and DBpedia,
respectively. This is comparable with GraphLab that is 1.3 and 2.8 times faster, respectively.

(5) CF. For collaborative filtering, we used real-life movieLens [3] with a training set |ET | = 90%|E |.
We compared GRAPE with the built-in SGD-based CF in GraphLab and with CF implemented for
Giraph and Blogel. It should be remarked that CF favors “vertex-centric” programming since each
user or product node only needs to exchange data with its neighbors, as indicated by the fact that
GraphLab and Giraph outperform Blogel. Nonetheless, as shown in Figure 15(k), GRAPE is on
average 4.1, 2.6, and 12.4 times faster than Giraph, GraphLab, and Blogel, respectively, when the
number n of processors varies from 64 to 192. Moreover, GRAPE scales well with n.

(6) Scalability of GRAPE. As observed in McSherry et al. [51], the speed-up of a system may degrade
over more processors. We thus evaluated the scalability of GRAPE, which measures the ability to
keep the same performance when both the size of graph G (denoted as ( |V |, |E |)) and the number
n of processors increase proportionally. We varied n from 64 to 192, and for each n, deployed
GRAPE over a synthetic graph. The graph size varies from (50M, 500M ) (i.e., 50 million nodes and
500 million edges; denoted asG1) to (250M, 2.5B) (denoted asG5), with a fixed ratio between edge
number and node number and proportional to n. The scalability at, for example, (128,G3) is the
ratio of the time using 64 processors over G1 to its counterpart using 128 processors over G3. As
shown in Figure 15(l), GRAPE preserves a reasonable scalability (close to linear scalability, the
optimal scalability).

We further evaluated the COST [51] of GRAPE, which denotes the hardware configuration (the
number of cores) required by GRAPE to outperform a competent single-threaded implementation.
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Table 3. COST of GRAPE

Algorithms Dataset GRAPE cores GRAPE time (s) Single-threaded time (s)
SSSP traffic 4 6.08 6.14

Friendster 4 96.3 101.1
UKWeb 2 149.1 151.8*

CC traffic 2 1.52 1.63
Friendster 4 35.5 40.3
UKWeb 2 21.6 27.9*

Sim DBpedia 2 7.11 7.32
Friendster 2 44.0 93.7*

SubIso DBpedia 24 0.08 0.08
Friendster 32 20.4 25.0*

CF movieLens 2 460.0 733

It measures the extra overhead (e.g., communication) introduced by parallel systems relative to
single-threaded implementations. The results are reported in Table 3. For CC, we adopted its orig-
inal implementation1 [51] as the single-threaded version. For SSSP, Sim, SubIso, and CF, no imple-
mentations are given in McSherry et al. [51], and we adopted the best single-threaded implemen-
tations to our knowledge for comparison with GRAPE. Following McSherry et al. [51], for large
input graphs that are unable to fit into RAM, we used the external I/O on SSD as an extension to
RAM (marked with * in Table 3).

From Table 3 we can see the following. (1) For SSSP, CC, Sim, and CF, GRAPE achieves speed-
up over single-threaded implementations with just 2 or 4 cores over all tested input graphs.
(2) For SubIso, even with its relatively heavy prefetching cost (Section 5.1), GRAPE still out-
performs the single-threaded implementations with 24 or 32 cores (just 2 physical machines).
(3) According to McSherry et al. [51], GraphLab had a COST of 512 cores and Spark GraphX had
unbounded COST (no configuration can outperform single-threaded). Therefore, GRAPE demon-
strates better scalability than GraphLab and GraphX with smaller extra overhead for parallel graph
computations.

It should be remarked that parallelization overheads are inevitable for all distributed/parallel
systems, including but not limited to GRAPE. Nonetheless, parallel processing often works better
when dealing with large-scale graphs that are beyond the capacity of a single machine.

Exp-2: Communication cost. The communication cost (in bytes) reported by Giraph, GraphLab,
and Blogel depends on their own implementation of message blocks and protocols. As observed in
Han et al. [36], these built-in message or byte counters differ from each other: Blogel counts cross-
process bytes, GraphLab reports cross-machine bytes, and Giraph tracks cross-partition bytes. For
a fair comparison, we adopted a third-party tool, Nethogs [10], following the practice [36]. It tracks
the total bytes sent by each machine during the run by monitoring the system file /proc/net/dev.
This metric, better aligned to parallel models of the systems, reveals consistent results with better
insights.

In the same setting as Exp-1, Figure 16 reports the communication costs of the systems. The
results show that, in all cases, GRAPE incurs much less communication cost than Giraph and
GraphLab. On datasets excluding traffic, with 192 processors, it ships on average 0.08%, 1.1%,
0.3%, 0.18%, and 8.4% of the data shipped for SSSP, Sim, CC, SubIso, and CF by Giraph, and 0.11%,
0.14%, 0.3%, 0.19%, and 44% by GraphLab, respectively; moreover, it reduces their cost by 6 and 5

1https://github.com/frankmcsherry/COST.
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Fig. 16. Communication costs.

orders of magnitude for SSSP and CC on traffic, respectively. While it ships more data than Blogel

for CC due to the precomputation of Blogel remarked earlier, it only ships 6.2%, 0.1%, 1.9%, and
4.8% of the data shipped by Blogel for Sim, SubIso, SSSP, and CF, respectively. On traffic, GRAPE

also reduces the communication cost of Blogel by 4 and 3 orders of magnitude for SSSP and CC,
respectively.

(1) SSSP. Figure 16(a–c) shows that both GRAPE and Blogel incur communication costs that are
orders of magnitudes less than those of GraphLab and Giraph. This is because vertex-centric pro-
gramming incurs a large amount of messages. Both block-centric programs (Blogel) and PIE pro-
grams (GRAPE) reduce unnecessary messages and trigger inter-block communication only when
necessary. We also observe that GRAPE ships 0.9% and 10% of the data shipped by Blogel over
UKWeb and Friendster, respectively. Indeed, GRAPE ships only changed values of update param-
eters, and needs fewer supersteps. These significantly reduce the size and number of messages.

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 18. Publication date: December 2018.



18:34 W. Fan et al.

Fig. 17. Incremental steps and optimization.

(2) CC. Figure 16(d–f) demonstrates similar improvement of GRAPE over GraphLab and Giraph

for CC. It ships on average 0.2% and 0.3% of the data shipped by Giraph and GraphLab on datasets
excluding traffic, and 0.0015% and 0.0003% on traffic, respectively. Since Blogel precomputes CC

(see Exp-1(2)), it ships little data. Nonetheless, GRAPE is not far worse than the near “optimal”
case of Blogel on Friendster and UKWeb, and it ships only 0.05% of the data shipped by Blogel on
traffic.

(3) Sim. Figure 16(g, h) reports the communication cost for graph simulation over Friendster and
DBpedia, respectively. One can see that GRAPE ships substantially less data (e.g., on average 0.9%,
0.1%, 4.9% of the data shipped by Giraph, GraphLab, and Blogel, respectively). Observe that the
communication cost of Blogel is much higher than that of GRAPE, even though it adopts inter-
block communication. This shows that the extension of vertex-centric to block-centric by Blogel

may not suffice to reduce messages when it comes to complex queries. GRAPE works better than
these systems by employing incremental IncEval to reduce redundant messages and computation.

(4) SubIso. Figure 16(i, j) reports the results for SubIso over Friendster and DBpedia, respectively.
The results are consistent with their counterparts for Sim. On average, GRAPE ships 0.18%, 0.24%,
and 0.11% of the data shipped by Giraph, GraphLab, and Blogel, respectively.

(5) CF. Figure 16(k) reports the result for CF over movieLens. On average, GRAPE ships 5.6%,
43.3%, and 3.2% of the data shipped by Giraph, GraphLab, and Blogel, respectively.

(6) Synthetic. In the same setting as Figure 15(l), Figure 16(l) reports the communication cost for
SSSP using synthetic graphs. The results demonstrate that more communication cost is incurred
over larger graphs and more processors, due to increased border nodes, as expected.

Exp-3: Incremental computation. We evaluated the effectiveness of incremental IncEval. We
implemented a batch version of GRAPE for Sim queries, denoted as GRAPENI, which uses PEval

to perform iterative computations and handle the messages instead of IncEval. It mimics the case
when no incremental computation is used. As shown in Figure 17(a), over Friendster, (1) GRAPE

outperforms GRAPENI by 9.0 times with 192 processors and (2) the gap is larger when less pro-
cessors are employed (e.g., 11.0 times when 64 processors are used). This is because the fewer
processors used, the larger the fragments reside at each processor, and, as a consequence, heavier
computation costs are incurred at each superstep. This verifies that incremental steps effectively
reduces redundant local computations in iterative graph computations. The results on DBpedia

are consistent (not shown).

Exp-4. Compatibility. We also evaluated the compatibility of optimization strategies de-
veloped for sequential graph algorithms with GRAPE parallelization. For a query class
Q, a sequential algorithm A and its optimized version A∗ for Q, denote the speedup

of the optimization as T (A)
T (A∗ ) . Denote the running time of GRAPE parallelization of A
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(respectively,A∗) asTp (A) (respectivle,Tp (A∗)) for a given number n of processors. Ideally, T (A)
T (A∗ )

should be close to
Tp (A)

Tp (A∗ ) ; that is, GRAPE preserves the speedup from the optimization. That is, the

impact of the optimization is not “dampened out” by parallelization overhead such as synchro-
nization and message passing.

We make a case for graph simulation. We evaluated two sequential algorithms, one from Hen-
zinger et al.[39], and the other is an optimized version that employs indices to reduce candi-
dates [25]. Using Sim queries over Friendster. we found that the average speedup of sequential
algorithms is 1.24. Varying n from 64 to 192, we report the speedup of the parallelized algorithms
of GRAPE in Figure 17(b). The results on DBpedia are consistent (not shown). The results suggest
that the speedup is close to its sequential counterpart. Such optimization cannot be easily encoded
in vertex programs of Giraph and GraphLab and the V-mode and B-mode programs of Blogel.

Summary. From the experimental results, we find the following.

(1) By simply parallelizing sequential algorithms, the performance of GRAPE is already comparable
to state-of-the-art systems. Using from 64 to 192 processors over real-life graphs excluding traffic,
GRAPE is on average 484, 36, and 15 times faster than Giraph, GraphLab, and Blogel for SSSP;
151, 6.8, and 16 times for Sim; 149.3, 34.2, and 9.6 times for SubIso; and 4.6, 2.6, and 12.4 for CF,
respectively. For CC, it is 1,377 and 212 times faster than Giraph and GraphLab, respectively, and
is comparable to the “optimal” case of Blogel although Blogel embeds the computation of CC in
its graph partition phase. On traffic, for SSSP and CC, GRAPE is on average 4, 3 and 2 orders of
magnitude faster than Giraph, GraphLab, and Blogel, respectively. The results on synthetic graphs
are consistent.

(2) In the same setting, on datasets excluding traffic, GRAPE ships on average 0.07%, 0.12%, and
1.7% of the data shipped across machines by Giraph, GraphLab, and Blogel for SSSP; 0.89%, 0.14%,
and 4.9% for Sim; 0.18%, 0.23%, and 0.11% for SubIso; 5.6%, 43.3%, and 3.2% for CF, respectively.
For CC, it incurs 0.23% and 0.3% of data shipment of Giraph and GraphLab and is comparable to
“optimized” Blogel. On traffic, for SSSP and CC, it ships on average 5, 6, and 3 orders of magnitude
less data shipment by Giraph, GraphLab, and Blogel, respectively.

(3) GRAPE demonstrates good scalability when using more processors since its incremental com-
putation mitigates the impact of more border nodes and fragments.

(4) Incremental steps effectively reduce iterative recomputation. For Sim, it improves the response
time by 9.6 times on average.

(5) GRAPE inherits the benefit of optimized sequential algorithms. For Sim, it is on average 20%
faster by using the algorithm of Fan et al. [25] instead of the algorithm of Henzinger et al. [39].

8 CONCLUSION

We have proposed an approach to parallelizing sequential graph algorithms. Given a class Q of
graph queries, users can devise existing sequential algorithms for Q with minor changes, with-
out recasting the entire algorithms into a new model. GRAPE parallelizes the computation and
guarantees to converge at correct answers under a monotonic condition, as long as the sequential
algorithms are correct. Moreover, graph algorithms that are developed for existing parallel graph
systems can be migrated to GRAPE without incurring extra complexity. We have verified that
GRAPE achieves comparable performance to the state-of-the-art graph systems for various query
classes and that (bounded) IncEval effectively reduces unnecessary recomputation and hence the
cost of iterative graph computations. We hope that GRAPE will make parallel graph computations
accessible to a large group of users who are more familiar with sequential algorithms.
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A preliminary implementation of GRAPE is available at the GRAPE website [9]. We are in the
process of implementing asynchronous message passing, based on Fan et al. [27]. We are also im-
plementing a lightweight transaction controller, to support not only queries but also updates such
as insertions and deletions of nodes and edges. When the update load is light, GRAPE adopts non-
destructive updates that have proved useful in functional databases [64]. Otherwise, it switches to
multiversion concurrency control [14] that keeps track of timestamps and versions, as adopted by
existing distributed systems.

One topic for future work is to revise the asynchronous model of Fan et al. [27] to maximize
the benefit of pipelined parallelism and data-partitioned parallelism. Another topic is to develop
methods for incrementalizing graph algorithms with performance guarantees, extending other
work [11, 16, 24].
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