
Optimizing Pipe-like Mashup Execution for Improving Resource Utilization

Jingbo Xu, Hailong Sun, Xu Wang, Xudong Liu, Richong Zhang

School of Computer Science and Engineering
Beihang University

Beijing, China 100191
Email: {xujingbo, sunhl, wangxu, liuxd, zhangrc}@act.buaa.edu.cn

Abstract—Mashup is usually created by end-users to provide
new services by combining data or functionality from multiple
sources on the Web. Given that a mashup may have millions of
concurrent user access, it is essential to work out a framework
to optimize the runtime engine hosting the running of a myriad
of pipe-like mashups. According to our analysis, memory is
the primary resource to run mashups and we work out a
metric named PMT to measure the memory consumption. A
scheduling framework is then put forward consisting of mashup
decomposition and a PMT-aware scheduling policy, which is
named “lazy-start” designed to improve memory utilization. A
set of experiments are performed to show the effectiveness and
efficiency of this framework.

Keywords-mashup; web 2.0; web service; personalization;
performance optimization

I. INTRODUCTION

A mashup is a web application that combines data or

functionality from several sources to provide a new service.

Many industry pioneers like Google, IBM and Yahoo have

launched their own mashup platforms. Yahoo! Pipes, for

example, has done an extraordinarily good job with over

thousands of individual mashups being created and exe-

cuted over 5,000,000 times each day[1]. There can be a

large number of users to run their mashups concurrently,

meanwhile the infrastructure resources (e.g. memory) are

usually limited. Therefore, optimizing mashup execution

performance and improving resource utilization is of great

importance for a mashup runtime engine.

In this work, we first observe that most mashups are

developed to combine contents from various web sources

(e.g. RSS feeds) and there is little computing-intensive pro-

cessing during the execution. This means that in most cases

the mashup execution mainly consumes memory resource

instead of much CPU capacity. Based on this observation, we

define a metric called PMT (Product of Memory and Time)

to measure memory consumption and propose a scheduling

framework to optimize memory resource utilization. We

are especially concerned with pipe-like mashups (just as

Yahoo! Pipes), which are usually in the form of inverse

trees. In this framework, a mashup tree is decomposed

into a set of components called mashlets, which are the

basic scheduling units. Second, we find out that mashlets

belonging to one Merge operator have to wait for each other

at Merge operator. With this observation, we design a lazy-

start scheduling policy to avoid useless memory holding.

Major contributions of this work are as follows:

• We identify execution of most mashups mainly con-

sumes memory resources and propose to use PMT to

measure the memory consumption;

• We propose a PMT-aware scheduling framework for

runtime engine so as to improve memory utilization, in

which a pipe-like mashup is decomposed to mashlets

for efficient scheduling;

• On the basis of analysis of mashup structure, we design

a “lazy-start” scheduling strategy to reduce the memory

holding time of mashlets.

The rest of this paper is organized as follows. Section

II introduces related work; in Section III, we formalize

the performance optimization problem studied in this work;

Section IV presents the scheduling framework and our lazy-

start scheduling policy; in Section V, we present experiment

evaluation results; finally Section VI concludes this work.

II. RELATED WORK

Since its advent and popularity, mashup has been draw-

ing a lot of attentions of researchers. A significant body

of research on mashup is performance optimization. One

approach to enhancing mashups efficiency is to use a cache.

Study in [2] proposes a dynamic cache framework specifical-

ly designed for mashup. The cache framework stores results

at intermediate stages of mashup workflows. Another study

in [3] proposes a common component detection which is

used to reduce the delay resulting from executing repeated

components. And they propose an approach to increase the

probability of detecting common components by reordering

the operators. The study in [4] focuses on identifying code

smells indicative of the deficiencies in mashups. Authors

introduce refactoring targeted the code smells, reducing the

complexity of the mashups and standardizing their structures

to fit the community development patterns. A thread man-

agement strategy for server supporting the execution of event

driven mashups is discussed in [5][6]. They classify the Web

APIs into three categories and designed three service proxy

structures correspondingly, which can be used as a reference

when implementing new basic mashable components.



Mlt4 Mlt8

Cut

Merge

Geo
Tag

Sort

GeoTa
g

Fetch

Merge

Merge

End

Cut

Sort

Merge

Geo
Tag

Sort Filter

GeoTa
g

Fetch

Sort Fetch

Fetch

Fetch

Cut

Fetch

Fetch
Mlt7

Mlt9

Ml3

Mlt8

Mlt4 Mlt5Mlt1 Mlt2 Mlt6

Figure 1. Decomposing a mashup tree to mashlets, where the left is the
original mashup tree, and the upper right shows the mashlet representations
and lower right Mlt4 and Mlt8 as two mashlets.

These works have made certain achievements on the

performance improvement. However, they made mashups

more effective merely by refactoring them and changing the

original structure, which inevitably conducts misunderstand-

ing of users’ intent. Moreover, it takes more time to analysis

mashups and cannot meet the real-time demand in execution,

Even some works above are implemented in offline mode.

III. PROBLEM STATEMENT

A. Mashup Model

Mashup can be seen as a web application that fetches mul-

tiple data sources over the Internet, and processes the fetched

data and dispatches the results to end-users. A mashup

platform has some basic fetching and processing operators,

including Fetch, Filter, Sort, Merge, Cut, End, etc. Formally,

a mashup, Mp, can be represented by a tree Mp = {N,E},

where N denotes the set of operators in the mashup platform

and E is the edge set which shows the input and output

dependencies between operators. Specifically, intermediate

results are generated by Fetch operators and are manipulated

by corresponding operators as they flow across the nodes.

Multiple intermediate results are merged together when they

meet a Merge node and are finally dispatched by the End
operator to the end user as the final results.

We propose a data structure “mashlet” as scheduling unit.

Mashlets are fragments of mashup and produced by splitting

the mashup on every Merge operator. A mashlet can be rep-

resented as a quadruple, mlti = {id, ISeti, Oi, oprSeqi},

means a mashlet mlti contains several input flows ISeti ={
I1i , I

2
i ...

}
, only one output dataflow Oi as its result, and a

sequence of operators oprSeqi manipulating the data. Thus

the execution of a mashlet is to process data from input

flows with the operators one by one and transmit result to

Figure 2. Overview of PMT-Aware Scheduling Framework

the next mashlet through output. A mashup returns a final

result when the last mashlet ends processing.

We can estimate the execution time of a mashlet based

on historical statistics. T i
opr denotes the average consuming

time of opri. The predicted run time of mlti can be denoted

as prT imei =
∑

Topr, where opr is in oprSeqi. In

addition, we introduce a concept named “Sibling Mashlets”

to represent the relationship of mashlets have the same

parent node in the mashlet tree. Sibling mashlets may be

interdependent with each other during the execution.

B. Performance Metric

In our study, we find that mashups mainly consumes mem-

ory resources on the platform. The data stream is filled up

on Fetch operators at the beginning and has minor changes

afterwards, while operators process the dataflow with less

CPU usage. Thus the memory allocation for mashlets is

easier to meet bottleneck compared to other resources.

We introduce a metric named PMT, which means Product

of Memory and Time, to measure memory resource con-

sumption of a mashlet in time and space dimensions.

Our goal is to design a scheduling policy to minimize

the accumulated PMT of a single mashup in its whole life

cycle, so as to archive a high effective rate of utilization of

the memory resources of the platform.

IV. PMT-AWARE SCHEDULING FRAMEWORK

A. Framework Overview

Figure 2 shows the architecture for our mashup platform.

The platform mainly contains 4 parts, namely Mashup Edi-
tor, Mobile Client, Repository and Mashup Runtime Engine.

Users can develop a mashup with Mashup Editor and use a

mashup with the Mobile Client. The Mashup Repository is

designed to store mashups for reuse. Figure 2 also illustrates

four critical modules in the Mashup Runtime Engine. When a

mashup is sent to the engine, Splitter analyzes its structure

and decomposes it to several mashlets. The mashlets are

added to the Mashlets Queue. PMT Scheduler is implement-

ed repeatedly runs to refresh the PMT value of mashlets

and determines which one to be scheduled to Executor next.

The Executor maintains many operators. Every operator runs



its own functionality such as fetching or manipulating data

according to certain rule.

B. PMT-aware Scheduling Policy

Let us look at the life cycle of a mashlet. It is filled up with

input data at the beginning and frees itself after transmitting

the data flow to the subsequent mashlet. As previously

mentioned, the memory consumption can be measured with

PMT.

We have a guiding principle for the design of scheduling

policy. A mashlet with a high PMT value has a high priority.

The significance of this rule is to run the most resources

consuming mashlet and free its holding memory.

Based on this principle, we give a native Max-first PMT-

aware scheduling policy works on the infrastructure depicted

in Figure 2. Algorithm description is presented as follows.

Algorithm 1: PMT-aware Scheduling Policy

Require: select some mashlets to execute. where

executing pool and scheduling queue are

both singlton.

Input : mashup execute requests

1 for mashup in requests do
2 TempSet ← Splitter(mashup)

3 for mashlet in TempSet do
4 CalculatePMT(mashlet)
5 AddToQueue(mashlet)
6 end
7 end
8 while queue �= 0 and pool.isNotFull do
9 t ← pool.remainSize

10 for mashlet in queue do
11 UpdatePMT(mashlet)
12 end
13 pool ← SelectMashlets(queue, t)
14 end

1) Mashups are committed to the platform and decom-

posed to mashlets by the Splitter.

2) At first, PMT Scheduler associates a roughly PMT

value to a mashlet approximately based on historical

statistics.

3) Mashlets are inserted into Scheduling Queue. Then

their PMT values are updated repeatedly by the PMT

Scheduler along the waiting.

4) Mashlets with the highest PMT value will pop up from

Scheduling Queue and be executed.

PMT Scheduler calculates PMT value in stage 2 and 3.

In the calculation, memory size occupied by a mashlet in its

running time basically is the sum of its input data streams.

To take note of a phenomenon, mashlets with leaf-nodes in

the original mashup tree has no input data and they begin

with Fetch operators. We treat data, executed after Fetch, as

input data without loss of generality.

We use PMTrun to represent PMT value of a mashlet

during its execution, in which the ISizeki denotes the kth

input memory size of mashleti.

PMTrun = prT ime ∗
∑

k

ISizeki (1)

C. Lazy Start-based Scheduling Algorithm

We investigate the execution of the mashup as shown in

Figure 1. Four mashlets start at the same time but may

not arrive at Merge operator simultaneously because mlt4
takes more time to extract geo information. mlt3, mlt5 and

mlt6 have to wait for mlt4 to complete its processing with

their own results ready for merge. Since mashlets have to

wait for synchronization at the Merge node, It is a natural

optimization to reduce the memory consumption during this

block time.

Here we introduce a concept named “lazy-start” to de-

scribe this optimization. Lazy-start is a method to start

mashlets of a mashup asynchronously so that data flows

can arrive at the Merge points simultaneously and blocks

between sibling mashlets are eliminated.

But the effect of lazy-start is affected by two constraints in

practical scheduling. First, because of the limited resources

and load capacity, mlti may not be scheduled to run at ti0
exactly. Second, the deviation introduced by estimation may

affect ti0 calculation. By taking these into account, we give

a formula to illustrate the cost caused by a mashlet delay

from its assigned start time. The cost comes from its sibling

mashlets and its precursor mashlets waiting for processing

with their result size. Similarly, we use OSizei to represent

the output memory size of mlti.

PMTdelay = (t−t0)∗(
∑

p

OSizepsibl+
∑

q

OSizeqprec) (2)

Then we use calculator of PMT to PMT = PMTrun +
PMTdelay . PMT denotes the chain cost of a delay and

urgency degree of mashlets, the scheduling policy based on

this dynamic factor becomes more effective.

PMT embodies some properties. First, PMTdelay in-

creases over time, which means the priority of a mashlet

grows along with delay and starvation has been avoided.

Second, the chain effect of delay ensures the scheduling of

a mashup as a whole. After a mashlet has been executed,

the PMTdelay of its siblings or successors increases, which

accelerate the whole mashup to be executed.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

In our experiment, we develop a mashup platform provid-

ing 8 distinct featured modules, namely Fetch, Sort, Filter,



0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5 x 108

Sequences No. of Mashlet

PM
Ts

FIFO
Max First
Lazy Start

Figure 3. PMTs of mashlets at 200 concurrent
mashup requests.

0 50 100 150 200
0

1000

2000

3000

4000

5000

Sequences No. of Mashup
M

ill
is

ec
on

d

FIFO
Max First
Lazy Start

Figure 4. Execution time of mashlets at 200
concurrent mashup requests.

50 100 150 200 250 300
0

2

4

6

8

10

12 x 1010

Concurrency

A
cc

um
ul

at
ed

 P
M

Ts

FIFO
Max First
Lazy Start

Figure 5. Accumulated PMT of mashlets
varing with concurrency.

Cut, GeoTag, Merge, Sub-element and Unique, as the atomic

operators. We use a mashup containing three mashlets as the

test case, which generates combined news from RSS feeds

on QQ.com and Sina.com with average size of 50K. The

number of concurrent mashup execution requests varies with

the experiment, ranging from 50 to 300. We calculate the real

result size of a mashlet in bytes, and timing in millisecond.

B. Results and Analysis

Firstly, we quantify the performance of memory utiliza-

tion. We generate 200 mashup requests concurrently and

record the PMT of corresponding mashlets. Figure 3 shows

PMT of mashlets as the lazy-start is applied, mashlets

start asynchronously and in a more effective order. Thus,

PMT reduces significantly by 28.65% through avoid wasting

memory consumptions and blocking time.

We also find lazy-start scheduling reduces the execution

time of individual mashup. In Figure 4, we draw each

mashup execution time in their outcome order. When a

mashlet ends execution, the calculation of PMT in lazy-

start heighten the priority of its sibling mashlets and the

subsequent one. Thus the mashlets coming from the same

mashup would all be executed not far apart and bring a

continuity, which reduces the execution time of the whole

mashup. According to our experimental data, the average

execution time of mashups at concurrency of 200 has shorted

by 28.53% compared to that with FIFO scheduling.

In our second set of experiment, we evaluate the effects

of lazy-start with different concurrency. We set a number

of concurrent requests ranging from 50 to 300. As shown

in Figure 5, the reduction of mashlet PMT and mashup

execution time is affected by the concurrency with a positive

correlation, varies from 12% to 44%.

VI. CONCLUSION

Mashup is a popular development method for end-users to

create personalized services or content and the performance

of runtime engine is an important issue for a mashup

platform. In this work, we aim at improving the execution

performance of pipe-like mashups. Taking the structure

characterization of mashups into consideration, we propose

a new metric PMT to measure the accumulated memory

and design a “lazy-start” scheduling policy reduces the

memory holding time of a mashlet and improves the memory

utilization of the runtime engine.

We will further improve our scheduling policy by adapting

the mashup model to a more general acyclic graph situation

in the future work. Moreover, we will take other resource

(e.g. CPU) into account to improve the utilization of multiple

types of resources.

ACKNOWLEDGMENT

This work was supported by China 863 program

(No. 2012AA011203), National Natural Science Foun-

dation of China (No. 61103031), Specialized Research

Fund for the Doctoral Program of Higher Education (No.

20111102120016) and Beijing Nova Program.

REFERENCES

[1] Yahoo Inc, Yahoo! Pipes, http://pipes.yahoo.com.

[2] O. Hassan, L. Ramaswamy, and J. Miller, “Mace: A dynamic
caching framework for mashups,” in ICWS 2009. IEEE, pp.
75–82.

[3] O. Hassan, L. Ramaswamy, and J. Miller, “Enhancing scalabil-
ity and performance of mashups through merging and operator
reordering,” in ICWS, 2010. IEEE, 2010, pp. 171–178.

[4] K. Stolee and S. Elbaum, “Refactoring pipe-like mashups for
end-user programmers,” in Proceeding of the 33rd internation-
al conference on Software engineering. ACM, 2011, pp. 81–
90.

[5] M. Stecca and M. Maresca, “An execution platform for event
driven mashups,” in Proceedings of the 11th International
Conference on Information Integration and Web-based Appli-
cations & Services. ACM, 2009, pp. 33–40.

[6] M. Stecca and M. Maresca, “Thread management in mashup
execution platforms,” in Proceedings of the 12th International
Conference on Information Integration and Web-based Appli-
cations & Services. ACM, 2010, pp. 837–840.


